Independent humidity engineering of MAPbI3 absorbers and hole transport layers for enhanced performance in perovskite solar cells

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Junyeong Lee , Akshaiya Padmalatha Muthukrishnan , Rukesh Kumar Selvaprakash , Jongbok Kim , Sungjin Jo
{"title":"Independent humidity engineering of MAPbI3 absorbers and hole transport layers for enhanced performance in perovskite solar cells","authors":"Junyeong Lee ,&nbsp;Akshaiya Padmalatha Muthukrishnan ,&nbsp;Rukesh Kumar Selvaprakash ,&nbsp;Jongbok Kim ,&nbsp;Sungjin Jo","doi":"10.1016/j.apsadv.2025.100843","DOIUrl":null,"url":null,"abstract":"<div><div>This study extends beyond the analysis of performance variations in MAPbI<sub>3</sub> fabricated under different relative humidity (RH) conditions by independently preparing the Spiro-OMeTAD hole transport layer (HTL) under decoupled humidity conditions. This approach enables a systematic investigation of the individual impact of RH on each layer. Moderate humidity levels, particularly around 60 % RH, significantly enhance device efficiency by simultaneously improving the crystallinity of the perovskite layer and the electrical conductivity of the HTL. Structural and optoelectronic characterizations indicate that residual PbI<sub>2</sub> formed under moderate humidity conditions effectively passivates shallow trap states at the MAPbI<sub>3</sub> interface, suppressing non-radiative recombination and facilitating more efficient charge extraction. Moreover, selectively tuning the humidity for each functional layer reveals that humidity-controlled HTL fabrication independently contributes to overall device performance, highlighting the critical role of layer-specific environmental control. In contrast to previous studies that applied uniform humidity conditions across all layers, this work distinguishes the individual effects of humidity modulation during each fabrication step. These findings offer valuable insights for developing scalable, humidity-resilient fabrication strategies aimed at achieving high-efficiency and stable PSCs.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"29 ","pages":"Article 100843"},"PeriodicalIF":8.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study extends beyond the analysis of performance variations in MAPbI3 fabricated under different relative humidity (RH) conditions by independently preparing the Spiro-OMeTAD hole transport layer (HTL) under decoupled humidity conditions. This approach enables a systematic investigation of the individual impact of RH on each layer. Moderate humidity levels, particularly around 60 % RH, significantly enhance device efficiency by simultaneously improving the crystallinity of the perovskite layer and the electrical conductivity of the HTL. Structural and optoelectronic characterizations indicate that residual PbI2 formed under moderate humidity conditions effectively passivates shallow trap states at the MAPbI3 interface, suppressing non-radiative recombination and facilitating more efficient charge extraction. Moreover, selectively tuning the humidity for each functional layer reveals that humidity-controlled HTL fabrication independently contributes to overall device performance, highlighting the critical role of layer-specific environmental control. In contrast to previous studies that applied uniform humidity conditions across all layers, this work distinguishes the individual effects of humidity modulation during each fabrication step. These findings offer valuable insights for developing scalable, humidity-resilient fabrication strategies aimed at achieving high-efficiency and stable PSCs.
钙钛矿太阳能电池中MAPbI3吸收层和空穴传输层的独立湿度工程
本研究通过在解耦湿度条件下独立制备Spiro-OMeTAD空穴传输层(HTL),进一步分析了不同相对湿度条件下制备的MAPbI3的性能变化。这种方法可以系统地研究RH对每一层的个别影响。适度的湿度水平,特别是60%左右的相对湿度,可以通过同时改善钙钛矿层的结晶度和HTL的导电性来显着提高器件效率。结构和光电子表征表明,在中等湿度条件下形成的残余PbI2有效地钝化了MAPbI3界面的浅阱态,抑制了非辐射重组,促进了更有效的电荷提取。此外,选择性地调整每个功能层的湿度表明,湿度控制的HTL制造独立地有助于整体器件性能,突出了特定层环境控制的关键作用。与之前在所有层上应用均匀湿度条件的研究相反,这项工作区分了每个制造步骤中湿度调制的单个影响。这些发现为开发可扩展、抗湿度的制造策略提供了宝贵的见解,旨在实现高效、稳定的psc。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信