{"title":"Improved interfacial compatibility of carbon fibers/PEEK laminated composites via incorporating biphenyl-branched poly(aryl-ether-nitrile)","authors":"Xiaoxi Zeng, Xuetao Shi, Yuhan Lin, Wenfeng Zhu, Houbu Li, Junliang Zhang, Junwei Gu","doi":"10.1016/j.jmst.2025.09.003","DOIUrl":null,"url":null,"abstract":"The insufficient interfacial adhesion between carbon fibers and the PEEK matrix remains a key obstacle to realizing the full mechanical and thermal performance of CF/PEEK composites. This work proposes a biphenyl-containing branched poly(aryl-ether-nitrile) (BPEN) with controlled branching degree as an interfacial compatibilizer and subsequently processed with PEEK via a powder-impregnation assisted hot-pressing method to fabricate CF@BPEN/PEEK laminated composites. When the BPEN branching degree is 10 %, the CF@BPEN/PEEK laminated composites exhibit interlaminar shear strength of 39.7 MPa and a flexural strength of 506.5 MPa, which are 66.1 % and 39.2 % higher than pristine CF/PEEK laminated composites (23.9 and 363.9 MPa), respectively. In addition, the modified laminated composites show enhanced thermal conductivity (1.45 W m⁻¹ K⁻¹), an elevated glass transition temperature by approximately 4 °C, and a remarkable X-band electromagnetic interference shielding effectiveness of 41.0 dB. These multifunctional enhancements originate from a robust, diffusion-driven interphase, constructed through π–π stacking interactions between BPEN biphenyl units and PEEK chains, as well as hydrogen bonding between cyano groups and oxygen-containing sites on the fiber surface. Furthermore, the polarization induced by the strong polar BPEN structure contributes to effective EMI performance.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"28 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.09.003","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The insufficient interfacial adhesion between carbon fibers and the PEEK matrix remains a key obstacle to realizing the full mechanical and thermal performance of CF/PEEK composites. This work proposes a biphenyl-containing branched poly(aryl-ether-nitrile) (BPEN) with controlled branching degree as an interfacial compatibilizer and subsequently processed with PEEK via a powder-impregnation assisted hot-pressing method to fabricate CF@BPEN/PEEK laminated composites. When the BPEN branching degree is 10 %, the CF@BPEN/PEEK laminated composites exhibit interlaminar shear strength of 39.7 MPa and a flexural strength of 506.5 MPa, which are 66.1 % and 39.2 % higher than pristine CF/PEEK laminated composites (23.9 and 363.9 MPa), respectively. In addition, the modified laminated composites show enhanced thermal conductivity (1.45 W m⁻¹ K⁻¹), an elevated glass transition temperature by approximately 4 °C, and a remarkable X-band electromagnetic interference shielding effectiveness of 41.0 dB. These multifunctional enhancements originate from a robust, diffusion-driven interphase, constructed through π–π stacking interactions between BPEN biphenyl units and PEEK chains, as well as hydrogen bonding between cyano groups and oxygen-containing sites on the fiber surface. Furthermore, the polarization induced by the strong polar BPEN structure contributes to effective EMI performance.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.