Wenyue Zhao, Xibin Ji, Rui Chen, Zeyu Du, Bowen Jin, Hai Zhou, Liwen Zhao, Dongsheng Li
{"title":"Divergent leaf water strategies in three coexisting desert shrub species: from the perspective of hydraulic, stomatal, and economic traits.","authors":"Wenyue Zhao, Xibin Ji, Rui Chen, Zeyu Du, Bowen Jin, Hai Zhou, Liwen Zhao, Dongsheng Li","doi":"10.1093/treephys/tpaf110","DOIUrl":null,"url":null,"abstract":"<p><p>Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e., hydraulic, stomatal, or economic traits), severely limiting our capacity to comprehensively predict plant vulnerability and sustainability, especially under drought-stress conditions. Here, we examined the leaf hydraulic, stomatal, and economic traits of three coexisting shrub species (i.e., Haloxylon ammodendron, Calligonum mongolicum, and Nitraria sphaerocarpa) in the Badain Jaran desert-oasis ecotone to comprehensively evaluate their water strategies and drought adaptation mechanisms. The results demonstrated that these three shrubs exhibited significant differences in leaf hydraulic vulnerability, osmoregulatory capacity, stomatal behavior, and economic traits. Nonetheless, these traits remain tightly related to guarantee their survival. Interestingly, two distinct interaction mechanisms between stomatal and hydraulic regulation were identified among the three shrubs with varying stomatal sensitivity. Specifically, N. sphaerocarpa and H. ammodendron employed relatively lower isohydric stomatal behavior, characterized by a synergistic decrease in vapor-phase water loss as liquid-phase water transport decreased during severe atmospheric drought. Conversely, C. mongolicum adopted higher isohydric stomatal behavior, rapidly reducing vapor-phase water loss during initial drought stress to compensate for its more vulnerable liquid-phase water transport system. Notably, all three shrubs presented risky leaf water strategies with negative hydraulic safety margins. Among them, the hydraulic dysfunction risk was lowest for C. mongolicum, followed by N. sphaerocarpa and H. ammodendron. Overall, our findings are anticipated to offer valuable insights for afforestation initiatives and ecological conservation efforts in desert-oasis ecotones that function as critical shelterbelts.</p>","PeriodicalId":23286,"journal":{"name":"Tree physiology","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tree physiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/treephys/tpaf110","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FORESTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Leaves constitute a vital bottleneck in whole-plant water transport, and their water strategies are key determinants of plant competition and productivity. Nonetheless, our knowledge of leaf water strategies predominantly stems from single perspectives (i.e., hydraulic, stomatal, or economic traits), severely limiting our capacity to comprehensively predict plant vulnerability and sustainability, especially under drought-stress conditions. Here, we examined the leaf hydraulic, stomatal, and economic traits of three coexisting shrub species (i.e., Haloxylon ammodendron, Calligonum mongolicum, and Nitraria sphaerocarpa) in the Badain Jaran desert-oasis ecotone to comprehensively evaluate their water strategies and drought adaptation mechanisms. The results demonstrated that these three shrubs exhibited significant differences in leaf hydraulic vulnerability, osmoregulatory capacity, stomatal behavior, and economic traits. Nonetheless, these traits remain tightly related to guarantee their survival. Interestingly, two distinct interaction mechanisms between stomatal and hydraulic regulation were identified among the three shrubs with varying stomatal sensitivity. Specifically, N. sphaerocarpa and H. ammodendron employed relatively lower isohydric stomatal behavior, characterized by a synergistic decrease in vapor-phase water loss as liquid-phase water transport decreased during severe atmospheric drought. Conversely, C. mongolicum adopted higher isohydric stomatal behavior, rapidly reducing vapor-phase water loss during initial drought stress to compensate for its more vulnerable liquid-phase water transport system. Notably, all three shrubs presented risky leaf water strategies with negative hydraulic safety margins. Among them, the hydraulic dysfunction risk was lowest for C. mongolicum, followed by N. sphaerocarpa and H. ammodendron. Overall, our findings are anticipated to offer valuable insights for afforestation initiatives and ecological conservation efforts in desert-oasis ecotones that function as critical shelterbelts.
期刊介绍:
Tree Physiology promotes research in a framework of hierarchically organized systems, measuring insight by the ability to link adjacent layers: thus, investigated tree physiology phenomenon should seek mechanistic explanation in finer-scale phenomena as well as seek significance in larger scale phenomena (Passioura 1979). A phenomenon not linked downscale is merely descriptive; an observation not linked upscale, might be trivial. Physiologists often refer qualitatively to processes at finer or coarser scale than the scale of their observation, and studies formally directed at three, or even two adjacent scales are rare. To emphasize the importance of relating mechanisms to coarser scale function, Tree Physiology will highlight papers doing so particularly well as feature papers.