Conditional deep generative normative modeling for structural and developmental anomaly detection in the fetal brain

IF 4.5 2区 医学 Q1 NEUROIMAGING
Sungmin You , Andrea Gondova , Carlos Simon Amador Izaguirre , Guillermo Tafoya Milo , Seungyoon Jeong , Han-Jui Lee , Tomo Tarui , Caitlin K. Rollins , Hyuk Jin Yun , P. Ellen Grant , Kiho Im
{"title":"Conditional deep generative normative modeling for structural and developmental anomaly detection in the fetal brain","authors":"Sungmin You ,&nbsp;Andrea Gondova ,&nbsp;Carlos Simon Amador Izaguirre ,&nbsp;Guillermo Tafoya Milo ,&nbsp;Seungyoon Jeong ,&nbsp;Han-Jui Lee ,&nbsp;Tomo Tarui ,&nbsp;Caitlin K. Rollins ,&nbsp;Hyuk Jin Yun ,&nbsp;P. Ellen Grant ,&nbsp;Kiho Im","doi":"10.1016/j.neuroimage.2025.121442","DOIUrl":null,"url":null,"abstract":"<div><div>Fetal brain development is a complex and dynamic process, and its disruption can lead to significant neurological disorders. Early detection of brain aberrations during pregnancy is critical for optimizing postnatal medical intervention. We propose a deep generative anomaly detection framework, conditional cyclic variational autoencoding generative adversarial network (CCVAEGAN), that can identify structural brain anomalies using fetal brain magnetic resonance imaging. CCVAEGAN leverages covariate conditioning on gestational age and cyclic consistency training to generate high-fidelity normative fetal brain images to enhance anomaly detection across various neurodevelopmental stages and diagnoses. Using MRI data from typically developing and clinically abnormal fetuses across multiple sites, CCVAEGAN achieves superior image generation quality and anomaly detection accuracy than other comparable models, consistently producing anatomically precise images with lower reconstruction errors and higher structural similarities. Anomaly detection experiments yielded near-perfect AUROC values (&gt;0.99) across various anomaly score metrics, and visual assessments confirmed the model's ability to localize and characterize structural abnormalities. Additionally, external validation on separated-site cohorts demonstrated the generalizability of the CCVAEGAN framework, showing robust detection performance despite data variations. These findings demonstrate CCVAEGAN's potential as a powerful tool for automated, objective anomaly screening, that could significantly enhance the efficiency of clinical workflows for early diagnosis of fetal brain anomalies. Furthermore, this approach has the potential universality to apply to other medical imaging not limited to specific organs or imaging modalities in the future.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"319 ","pages":"Article 121442"},"PeriodicalIF":4.5000,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925004458","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Fetal brain development is a complex and dynamic process, and its disruption can lead to significant neurological disorders. Early detection of brain aberrations during pregnancy is critical for optimizing postnatal medical intervention. We propose a deep generative anomaly detection framework, conditional cyclic variational autoencoding generative adversarial network (CCVAEGAN), that can identify structural brain anomalies using fetal brain magnetic resonance imaging. CCVAEGAN leverages covariate conditioning on gestational age and cyclic consistency training to generate high-fidelity normative fetal brain images to enhance anomaly detection across various neurodevelopmental stages and diagnoses. Using MRI data from typically developing and clinically abnormal fetuses across multiple sites, CCVAEGAN achieves superior image generation quality and anomaly detection accuracy than other comparable models, consistently producing anatomically precise images with lower reconstruction errors and higher structural similarities. Anomaly detection experiments yielded near-perfect AUROC values (>0.99) across various anomaly score metrics, and visual assessments confirmed the model's ability to localize and characterize structural abnormalities. Additionally, external validation on separated-site cohorts demonstrated the generalizability of the CCVAEGAN framework, showing robust detection performance despite data variations. These findings demonstrate CCVAEGAN's potential as a powerful tool for automated, objective anomaly screening, that could significantly enhance the efficiency of clinical workflows for early diagnosis of fetal brain anomalies. Furthermore, this approach has the potential universality to apply to other medical imaging not limited to specific organs or imaging modalities in the future.
胎儿大脑结构和发育异常检测的条件深度生成规范模型。
胎儿大脑发育是一个复杂的动态过程,其中断可导致严重的神经系统疾病。妊娠期早期发现脑异常对于优化产后医疗干预至关重要。我们提出了一个深度生成异常检测框架,条件循环变分自编码生成对抗网络(CCVAEGAN),它可以通过胎儿脑磁共振成像识别结构性脑异常。CCVAEGAN利用胎龄和循环一致性训练的协变量条件反射来生成高保真的标准胎儿脑图像,以增强不同神经发育阶段和诊断的异常检测。CCVAEGAN使用来自多个部位的典型发育和临床异常胎儿的MRI数据,比其他可比模型具有更好的图像生成质量和异常检测精度,始终产生具有更低重建误差和更高结构相似性的解剖精确图像。异常检测实验在各种异常评分指标中获得了近乎完美的AUROC值(>0.99),视觉评估证实了该模型定位和表征结构异常的能力。此外,对分离位点队列的外部验证证明了CCVAEGAN框架的通用性,尽管数据存在变化,但仍显示出稳健的检测性能。这些发现证明了CCVAEGAN作为一种自动化、客观异常筛查的强大工具的潜力,可以显著提高胎儿大脑异常早期诊断的临床工作流程的效率。此外,该方法具有潜在的普适性,可以应用于其他医学成像,而不局限于特定的器官或成像方式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信