Prediction of favorable outcomes of acute basilar artery occlusion using machine learning.

IF 4.3 1区 医学 Q1 NEUROIMAGING
Yanqin Liu, Pengyu Lu, Raynald -, Yuanyue Lu, Wandi Liu, Xiuping Li, Peng Zhang, Tingting Song, Yaxuan Sun, Yi Liu, Bin Han
{"title":"Prediction of favorable outcomes of acute basilar artery occlusion using machine learning.","authors":"Yanqin Liu, Pengyu Lu, Raynald -, Yuanyue Lu, Wandi Liu, Xiuping Li, Peng Zhang, Tingting Song, Yaxuan Sun, Yi Liu, Bin Han","doi":"10.1136/jnis-2025-023347","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>This study aims to develop an interpretable machine learning model using SHapley Additive exPlanations (SHAP) to predict favorable outcomes based on clinical, imaging, and angiographic data.</p><p><strong>Methods: </strong>This study analyzed data from 184 patients with acute basilar artery occlusion (BAO) who underwent endovascular treatment (EVT) and completed a 90-day follow-up at Shanxi Provincial People's Hospital. A total of 68 medical variables were collected to develop predictive models using three machine learning algorithms: logistic regression (LR), support vector machine (SVM), and Light Gradient Boosting Machine (LightGBM). Model performance was comprehensively assessed using Accuracy, Recall, Precision, F1 score, and the area under the receiver operating characteristic curve (AUC-ROC), and the best-performing model's results were interpreted using SHAP.</p><p><strong>Results: </strong>The SVM model demonstrated better performance, with an AUC of 0.899±0.059 (95% confidence interval (CI) 0.840 to 0.957), accuracy of 0.859±0.057, recall of 0.858±0.068, precision of 0.872±0.084, and an F1 score of 0.857±0.059. Recursive feature elimination with random forest (RF) and SHAP analysis revealed that the absence of ventilator use, absence of tracheotomy, lower National Institutes of Health Stroke Scale (NIHSS) scores at admission, and lower preoperative serum creatinine (SCR) levels were significant predictors of favorable 90-day outcomes.</p><p><strong>Conclusion: </strong>This study established a machine learning model to identify predictors of favorable outcomes in patients with acute BAO. Significant factors influencing prognosis included the use of mechanical ventilation, tracheotomy, NIHSS score, and preoperative SCR levels.</p>","PeriodicalId":16411,"journal":{"name":"Journal of NeuroInterventional Surgery","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of NeuroInterventional Surgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1136/jnis-2025-023347","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: This study aims to develop an interpretable machine learning model using SHapley Additive exPlanations (SHAP) to predict favorable outcomes based on clinical, imaging, and angiographic data.

Methods: This study analyzed data from 184 patients with acute basilar artery occlusion (BAO) who underwent endovascular treatment (EVT) and completed a 90-day follow-up at Shanxi Provincial People's Hospital. A total of 68 medical variables were collected to develop predictive models using three machine learning algorithms: logistic regression (LR), support vector machine (SVM), and Light Gradient Boosting Machine (LightGBM). Model performance was comprehensively assessed using Accuracy, Recall, Precision, F1 score, and the area under the receiver operating characteristic curve (AUC-ROC), and the best-performing model's results were interpreted using SHAP.

Results: The SVM model demonstrated better performance, with an AUC of 0.899±0.059 (95% confidence interval (CI) 0.840 to 0.957), accuracy of 0.859±0.057, recall of 0.858±0.068, precision of 0.872±0.084, and an F1 score of 0.857±0.059. Recursive feature elimination with random forest (RF) and SHAP analysis revealed that the absence of ventilator use, absence of tracheotomy, lower National Institutes of Health Stroke Scale (NIHSS) scores at admission, and lower preoperative serum creatinine (SCR) levels were significant predictors of favorable 90-day outcomes.

Conclusion: This study established a machine learning model to identify predictors of favorable outcomes in patients with acute BAO. Significant factors influencing prognosis included the use of mechanical ventilation, tracheotomy, NIHSS score, and preoperative SCR levels.

使用机器学习预测急性基底动脉闭塞的有利结果。
背景:本研究旨在开发一种可解释的机器学习模型,利用SHapley加性解释(SHAP)来预测基于临床、影像学和血管造影数据的有利结果。方法:本研究分析了184例在山西省人民医院接受血管内治疗(EVT)的急性基底动脉闭塞(BAO)患者的资料,并完成了90天的随访。共收集了68个医学变量,使用三种机器学习算法:逻辑回归(LR)、支持向量机(SVM)和光梯度增强机(LightGBM)建立预测模型。采用准确率、召回率、精确度、F1评分和受试者工作特征曲线下面积(AUC-ROC)对模型性能进行综合评估,并使用SHAP对表现最佳的模型结果进行解释。结果:SVM模型的AUC为0.899±0.059(95%可信区间(CI) 0.840 ~ 0.957),准确率为0.859±0.057,召回率为0.858±0.068,精密度为0.872±0.084,F1评分为0.857±0.059。随机森林递归特征消除(RF)和SHAP分析显示,未使用呼吸机、未进行气管切开术、入院时美国国立卫生研究院卒中量表(NIHSS)评分较低以及术前血清肌酐(SCR)水平较低是90天预后良好的显著预测因素。结论:本研究建立了一种机器学习模型来识别急性BAO患者预后良好的预测因素。影响预后的重要因素包括机械通气、气管切开术、NIHSS评分和术前SCR水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.50
自引率
14.60%
发文量
291
审稿时长
4-8 weeks
期刊介绍: The Journal of NeuroInterventional Surgery (JNIS) is a leading peer review journal for scientific research and literature pertaining to the field of neurointerventional surgery. The journal launch follows growing professional interest in neurointerventional techniques for the treatment of a range of neurological and vascular problems including stroke, aneurysms, brain tumors, and spinal compression.The journal is owned by SNIS and is also the official journal of the Interventional Chapter of the Australian and New Zealand Society of Neuroradiology (ANZSNR), the Canadian Interventional Neuro Group, the Hong Kong Neurological Society (HKNS) and the Neuroradiological Society of Taiwan.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信