Zichong Ji, Leqi Li, Meiqiong Zheng, Xinyuan Ye, Wenqing Yan, Zonglei Wang, Yi Liu, Yuli Wang, Yujie Zhang, Pengcheng Zhou, Jiawei Yang, Mingzhe Wang, Shihong Lin, Hossam Haick, Yan Wang
{"title":"Conductive Hydrogel-Enabled Electrode for Scalp Electroencephalography Monitoring.","authors":"Zichong Ji, Leqi Li, Meiqiong Zheng, Xinyuan Ye, Wenqing Yan, Zonglei Wang, Yi Liu, Yuli Wang, Yujie Zhang, Pengcheng Zhou, Jiawei Yang, Mingzhe Wang, Shihong Lin, Hossam Haick, Yan Wang","doi":"10.1002/smtd.202501242","DOIUrl":null,"url":null,"abstract":"<p><p>Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers. The superiority of scalp EEG is first established over forehead/ear EEG for capturing diverse neural signals and defining core requirements for hair-compatible interfaces: scalp conformability, electrical conductivity, low contact impedance, and interfacial stability. Conductive hydrogel electrode applications are then detailed in alpha wave detection, sleep monitoring, event-related potential studies, and brain-computer interfaces. Finally, persisting challenges and future opportunities are discussed.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01242"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501242","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Scalp electroencephalography (EEG) serves as a pivotal technology for the noninvasive monitoring of brain functional activity, diagnosing neurological disorders, and assessing cognitive states. However, inherent compatibility barriers between traditional rigid electrodes and the hairy scalp interface significantly compromise signal quality, long-term monitoring comfort, and user compliance. This review examines conductive hydrogel electrodes' pivotal role in advancing scalp EEG, particularly their unique capacity to overcome hair-interface barriers. The superiority of scalp EEG is first established over forehead/ear EEG for capturing diverse neural signals and defining core requirements for hair-compatible interfaces: scalp conformability, electrical conductivity, low contact impedance, and interfacial stability. Conductive hydrogel electrode applications are then detailed in alpha wave detection, sleep monitoring, event-related potential studies, and brain-computer interfaces. Finally, persisting challenges and future opportunities are discussed.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.