Dongxue Tang, Dan Pei, Meixiang Zhang, Xiaoying Hu, Minmin Lu, Zhen Li, Yu Wang, Yi Wang, Shuhua Yang, Zhizhong Gong
{"title":"Phosphorylation-dependent activation of MAP4K1/2 by OST1 mediates ABA-induced stomatal closure in Arabidopsis.","authors":"Dongxue Tang, Dan Pei, Meixiang Zhang, Xiaoying Hu, Minmin Lu, Zhen Li, Yu Wang, Yi Wang, Shuhua Yang, Zhizhong Gong","doi":"10.1111/jipb.70030","DOIUrl":null,"url":null,"abstract":"<p><p>In higher plants, stomatal movements represent a critical physiological process that matains cellular water homestasis while enabling photosynthetic gas exchange. Open stomata 1 (OST1), a key protein kinase in the abscisic acid (ABA) signaling cascade, has been established as a central regulator of stomatal dynamics. This study reveals that two highly conserved mitogen-activated protein kinase 1 (MAP4K1) and MAP4K2 are positive regulators in ABA promoted stomatal closure, and ABA-activated OST1 potentiates MAP4K1/2 through phosphorylation at conserved serine and threonine residues (S166, T170, and S479/S488). The activated MAP4K1, in turn, phosphorylates two critical downstream targets: plasma membrane H<sup>+</sup>-ATPase 2 (AHA2) at residues T858, T881, and Y946, and slow anion channel-associated 1 (SLAC1) at T114 and S116. Functional analysis demonstrates that the phosphomimetic (3D: S166D/T170D/S479D) MAP4K1, but not non-phosphorylatable (3A: S166A/T170A/S479A) MAP4K1, could fully restore drought tolerance and reduced water loss in detached leaves of map4k1map4k2 double mutant. Our findings delineate a previously unrecognized signaling module comprising OST1-MAP4K1/2-AHA2/SLAC1, which crucially modulates ABA-mediated stomatal regulation. This work advances our mechanistic understanding of phosphorylation cascades governing plant water relations and stress responses.</p>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jipb.70030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In higher plants, stomatal movements represent a critical physiological process that matains cellular water homestasis while enabling photosynthetic gas exchange. Open stomata 1 (OST1), a key protein kinase in the abscisic acid (ABA) signaling cascade, has been established as a central regulator of stomatal dynamics. This study reveals that two highly conserved mitogen-activated protein kinase 1 (MAP4K1) and MAP4K2 are positive regulators in ABA promoted stomatal closure, and ABA-activated OST1 potentiates MAP4K1/2 through phosphorylation at conserved serine and threonine residues (S166, T170, and S479/S488). The activated MAP4K1, in turn, phosphorylates two critical downstream targets: plasma membrane H+-ATPase 2 (AHA2) at residues T858, T881, and Y946, and slow anion channel-associated 1 (SLAC1) at T114 and S116. Functional analysis demonstrates that the phosphomimetic (3D: S166D/T170D/S479D) MAP4K1, but not non-phosphorylatable (3A: S166A/T170A/S479A) MAP4K1, could fully restore drought tolerance and reduced water loss in detached leaves of map4k1map4k2 double mutant. Our findings delineate a previously unrecognized signaling module comprising OST1-MAP4K1/2-AHA2/SLAC1, which crucially modulates ABA-mediated stomatal regulation. This work advances our mechanistic understanding of phosphorylation cascades governing plant water relations and stress responses.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.