On estimating the threshold voltage of vertical junctionless GaN power fin-MOSFETs

IF 2.5 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Smriti Singh, Ankita Mukherjee, Aasim Ashai, Tanmoy Pramanik, Biplab Sarkar
{"title":"On estimating the threshold voltage of vertical junctionless GaN power fin-MOSFETs","authors":"Smriti Singh,&nbsp;Ankita Mukherjee,&nbsp;Aasim Ashai,&nbsp;Tanmoy Pramanik,&nbsp;Biplab Sarkar","doi":"10.1007/s10825-025-02406-2","DOIUrl":null,"url":null,"abstract":"<div><p>Traditional analytical models derived for Si logic devices fail to estimate the threshold voltage (<i>V</i><sub><i>TH</i></sub>) of vertical junctionless GaN power Fin-channel metal oxide semiconductor field effect transistors (VJ GaN Fin-MOSFETs). Solving two-dimensional Poisson’s equation inside the drift region of VJ GaN Fin- MOSFETs is not a viable option as of now. Thus, we report an alternate methodology to derive the analytical model for estimating the <i>V</i><sub><i>TH</i></sub> of VJ GaN Fin-MOSFETs. The proposed model uses an available baseline model followed by adding tuning parameters to the baseline model via a standard procedure. The proposed model faithfully predicts the effect of crucial geometrical and bias parameters on <i>V</i><sub><i>TH</i></sub>; along with estimating the drain induced barrier lowering effect. The proposed methodology is generic in nature; it can be applied to other (ultra)wide bandgap semiconductor based VJ power MOSFETs that are currently under extensive investigation.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 6","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-025-02406-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional analytical models derived for Si logic devices fail to estimate the threshold voltage (VTH) of vertical junctionless GaN power Fin-channel metal oxide semiconductor field effect transistors (VJ GaN Fin-MOSFETs). Solving two-dimensional Poisson’s equation inside the drift region of VJ GaN Fin- MOSFETs is not a viable option as of now. Thus, we report an alternate methodology to derive the analytical model for estimating the VTH of VJ GaN Fin-MOSFETs. The proposed model uses an available baseline model followed by adding tuning parameters to the baseline model via a standard procedure. The proposed model faithfully predicts the effect of crucial geometrical and bias parameters on VTH; along with estimating the drain induced barrier lowering effect. The proposed methodology is generic in nature; it can be applied to other (ultra)wide bandgap semiconductor based VJ power MOSFETs that are currently under extensive investigation.

垂直无结GaN功率翅片mosfet的阈值电压估计
传统的Si逻辑器件解析模型无法估计垂直无结GaN功率Fin-channel金属氧化物半导体场效应晶体管(VJ GaN fin - mosfet)的阈值电压(VTH)。在VJ GaN - mosfet的漂移区域内求解二维泊松方程目前还不是一个可行的选择。因此,我们报告了一种替代方法来推导用于估计VJ GaN fin - mosfet的VTH的分析模型。建议的模型使用可用的基线模型,然后通过标准过程向基线模型添加调优参数。该模型忠实地预测了关键几何参数和偏置参数对VTH的影响;同时估计了排水引起的屏障降低效果。建议的方法是通用的;它可以应用于目前正在广泛研究的其他(超)宽带隙半导体的VJ功率mosfet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computational Electronics
Journal of Computational Electronics ENGINEERING, ELECTRICAL & ELECTRONIC-PHYSICS, APPLIED
CiteScore
4.50
自引率
4.80%
发文量
142
审稿时长
>12 weeks
期刊介绍: he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered. In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信