Finite-Time Multi-Agent Target Tracking on Riemannian Manifolds via Sliding Mode Control

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS
Hyunjin Ahn
{"title":"Finite-Time Multi-Agent Target Tracking on Riemannian Manifolds via Sliding Mode Control","authors":"Hyunjin Ahn","doi":"10.1109/LCSYS.2025.3599726","DOIUrl":null,"url":null,"abstract":"This letter investigates a novel control strategy for finite-time target tracking on Riemannian manifolds, building upon the asymptotic tracking dynamics proposed in existing works. While conventional geometric feedback controllers guarantee asymptotic convergence to the target, such approaches may fall short in practical scenarios where finite-time convergence is desired. To address this limitation, we incorporate a sliding mode control (SMC) mechanism into the existing geometric dynamics to enable finite-time convergence to a preassigned target on Riemannian manifolds. The proposed feedback controller is intrinsically defined with respect to the underlying manifold geometry and ensures rapid convergence. Numerical simulations are presented to validate the theoretical findings. This letter provides a new theoretical framework for finite-time target tracking in Riemannian geometric settings.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"9 ","pages":"2151-2156"},"PeriodicalIF":2.0000,"publicationDate":"2025-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11127176/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates a novel control strategy for finite-time target tracking on Riemannian manifolds, building upon the asymptotic tracking dynamics proposed in existing works. While conventional geometric feedback controllers guarantee asymptotic convergence to the target, such approaches may fall short in practical scenarios where finite-time convergence is desired. To address this limitation, we incorporate a sliding mode control (SMC) mechanism into the existing geometric dynamics to enable finite-time convergence to a preassigned target on Riemannian manifolds. The proposed feedback controller is intrinsically defined with respect to the underlying manifold geometry and ensures rapid convergence. Numerical simulations are presented to validate the theoretical findings. This letter provides a new theoretical framework for finite-time target tracking in Riemannian geometric settings.
滑模控制黎曼流形的有限时间多智能体目标跟踪
本文研究了一种新的控制策略,用于黎曼流形上的有限时间目标跟踪,建立在已有作品中提出的渐近跟踪动力学的基础上。虽然传统的几何反馈控制器保证了目标的渐近收敛,但这种方法在需要有限时间收敛的实际情况下可能会有所不足。为了解决这一限制,我们将滑模控制(SMC)机制结合到现有的几何动力学中,以使有限时间收敛到黎曼流形上预先指定的目标。所提出的反馈控制器本质上是根据底层流形几何来定义的,并保证了快速收敛。数值模拟验证了理论结果。本文为黎曼几何条件下的有限时间目标跟踪提供了一个新的理论框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信