First-principles investigation of hydrogen segregation and its effect on the Al/Al3Li interface cohesion

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER
Li Peng , Shuang He , Ye Liu , Xu Chen , Yuxuan Wang , Oleg I. Gorbatov , Ping Peng
{"title":"First-principles investigation of hydrogen segregation and its effect on the Al/Al3Li interface cohesion","authors":"Li Peng ,&nbsp;Shuang He ,&nbsp;Ye Liu ,&nbsp;Xu Chen ,&nbsp;Yuxuan Wang ,&nbsp;Oleg I. Gorbatov ,&nbsp;Ping Peng","doi":"10.1016/j.physb.2025.417751","DOIUrl":null,"url":null,"abstract":"<div><div>Aluminum and its alloys are known to be susceptible to hydrogen embrittlement, however, current experimental techniques face significant challenges in directly observing hydrogen atom distributions and their interactions with microstructural features in Al alloys. In this study, we investigate hydrogen-enhanced decohesion at Al/Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li interfaces in Al alloys using a systematic first-principles approach. Our results demonstrate that hydrogen atoms preferentially occupy at strained locations within both Al and Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li phases, with the Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li phase exhibiting a stronger trapping capability at the Al/Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li interface. This hydrogen distribution leads to reduction in cohesive strength of Al/Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li interface. Moreover, we show that the extent of hydrogen-enhanced decohesion on Al/Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li interface is influenced hydrogen concentration and temperature. These findings provide fundamental insight into hydrogen trapping and embrittlement mechanisms at Al/Al<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>Li interfaces and offer guidance for designing Al–Li alloys with improved hydrogen resistance through targeted control of composition and microstructure.</div></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":"717 ","pages":"Article 417751"},"PeriodicalIF":2.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452625008683","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Aluminum and its alloys are known to be susceptible to hydrogen embrittlement, however, current experimental techniques face significant challenges in directly observing hydrogen atom distributions and their interactions with microstructural features in Al alloys. In this study, we investigate hydrogen-enhanced decohesion at Al/Al3Li interfaces in Al alloys using a systematic first-principles approach. Our results demonstrate that hydrogen atoms preferentially occupy at strained locations within both Al and Al3Li phases, with the Al3Li phase exhibiting a stronger trapping capability at the Al/Al3Li interface. This hydrogen distribution leads to reduction in cohesive strength of Al/Al3Li interface. Moreover, we show that the extent of hydrogen-enhanced decohesion on Al/Al3Li interface is influenced hydrogen concentration and temperature. These findings provide fundamental insight into hydrogen trapping and embrittlement mechanisms at Al/Al3Li interfaces and offer guidance for designing Al–Li alloys with improved hydrogen resistance through targeted control of composition and microstructure.
氢偏析及其对Al/Al3Li界面内聚力影响的第一性原理研究
众所周知,铝及其合金易受氢脆的影响,然而,目前的实验技术在直接观察铝合金中氢原子分布及其与微观结构特征的相互作用方面面临着重大挑战。在这项研究中,我们使用系统的第一性原理方法研究了铝合金中Al/Al3Li界面的氢增强退聚。我们的研究结果表明,氢原子优先占据Al和Al3Li相中的应变位置,其中Al3Li相在Al/Al3Li界面上表现出更强的捕获能力。这种氢的分布导致Al/Al3Li界面的内聚强度降低。此外,我们还发现氢在Al/Al3Li界面上的增强脱黏程度受氢浓度和温度的影响。这些发现对Al/Al3Li界面的氢捕获和脆化机制提供了基本的见解,并为通过有针对性地控制成分和微观结构来设计具有更高抗氢性能的Al - li合金提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信