Deep learning-based visual prediction of hydrogen distribution in a passive autocatalytic recombiner

IF 2.6 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Won Jun Kim , Jaehoon Jung , Cong Truong Dinh , Sung Goon Park
{"title":"Deep learning-based visual prediction of hydrogen distribution in a passive autocatalytic recombiner","authors":"Won Jun Kim ,&nbsp;Jaehoon Jung ,&nbsp;Cong Truong Dinh ,&nbsp;Sung Goon Park","doi":"10.1016/j.net.2025.103897","DOIUrl":null,"url":null,"abstract":"<div><div>Maintaining the operational stability of Nuclear Power Plants (NPPs) during severe accident environments requires a comprehensive understanding of local hydrogen distribution. To mitigate hydrogen-associated risks, Passive Autocatalytic Recombiners (PARs), which operate passively through catalytic reactions, are extensively installed within the containment structures. This study numerically investigates the thermohydraulic behavior of PARs under various accidental conditions, specifically focusing on the effects of inlet velocity and temperature. Building upon previous research (Kim et al. [14]), this work aims to predict hydrogen distribution within PARs using only temperature and velocity data, applying Convolutional Neural Networks (CNN) with a U-Net and Auto-Encoder (AE) models featuring different encoder-decoder architectures (MLP-CNN, MLP-ResNet). The U-Net model shows outstanding predictive performance, achieving a MAPE of 2.32 %, MAE of 0.042, RMSE of 0.080, and Structural Similarity Index Measure (SSIM) of 0.99, using temperature and velocity contours as input data. AE models, which utilize low-dimensional thermohydraulic inputs such as inlet velocity, inlet temperature, and outlet temperature, also exhibit strong predictive capability. The MLP-CNN and MLP-ResNet architecture exhibit reliable performance, with MAPE below 2.8 %, MAE below 0.52, RMSE below 0.09, and SSIM above 0.92. This research highlights the feasibility of effectively visualizing hydrogen distribution in PARs through advanced data-driven models.</div></div>","PeriodicalId":19272,"journal":{"name":"Nuclear Engineering and Technology","volume":"58 1","pages":"Article 103897"},"PeriodicalIF":2.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1738573325004656","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Maintaining the operational stability of Nuclear Power Plants (NPPs) during severe accident environments requires a comprehensive understanding of local hydrogen distribution. To mitigate hydrogen-associated risks, Passive Autocatalytic Recombiners (PARs), which operate passively through catalytic reactions, are extensively installed within the containment structures. This study numerically investigates the thermohydraulic behavior of PARs under various accidental conditions, specifically focusing on the effects of inlet velocity and temperature. Building upon previous research (Kim et al. [14]), this work aims to predict hydrogen distribution within PARs using only temperature and velocity data, applying Convolutional Neural Networks (CNN) with a U-Net and Auto-Encoder (AE) models featuring different encoder-decoder architectures (MLP-CNN, MLP-ResNet). The U-Net model shows outstanding predictive performance, achieving a MAPE of 2.32 %, MAE of 0.042, RMSE of 0.080, and Structural Similarity Index Measure (SSIM) of 0.99, using temperature and velocity contours as input data. AE models, which utilize low-dimensional thermohydraulic inputs such as inlet velocity, inlet temperature, and outlet temperature, also exhibit strong predictive capability. The MLP-CNN and MLP-ResNet architecture exhibit reliable performance, with MAPE below 2.8 %, MAE below 0.52, RMSE below 0.09, and SSIM above 0.92. This research highlights the feasibility of effectively visualizing hydrogen distribution in PARs through advanced data-driven models.
基于深度学习的被动自催化重组器中氢气分布的可视化预测
在严重事故环境下保持核电站的运行稳定性需要对当地氢气分布有全面的了解。为了减轻与氢相关的风险,通过催化反应被动工作的被动自催化重组器(par)被广泛安装在安全壳结构内。本文通过数值模拟研究了各种意外条件下par的热水力特性,重点研究了入口速度和温度的影响。在之前的研究(Kim et al. b[14])的基础上,这项工作旨在仅使用温度和速度数据预测par内的氢气分布,应用卷积神经网络(CNN)和具有不同编码器-解码器架构(MLP-CNN, MLP-ResNet)的U-Net和自动编码器(AE)模型。U-Net模型显示出出色的预测性能,MAPE为2.32%,MAE为0.042,RMSE为0.080,结构相似指数测量(SSIM)为0.99,使用温度和速度轮廓线作为输入数据。AE模型利用低维热水力输入,如进口速度、进口温度和出口温度,也表现出很强的预测能力。MLP-CNN和MLP-ResNet架构表现出可靠的性能,MAPE低于2.8%,MAE低于0.52,RMSE低于0.09,SSIM高于0.92。该研究强调了通过先进的数据驱动模型有效可视化par中氢分布的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nuclear Engineering and Technology
Nuclear Engineering and Technology 工程技术-核科学技术
CiteScore
4.80
自引率
7.40%
发文量
431
审稿时长
3.5 months
期刊介绍: Nuclear Engineering and Technology (NET), an international journal of the Korean Nuclear Society (KNS), publishes peer-reviewed papers on original research, ideas and developments in all areas of the field of nuclear science and technology. NET bimonthly publishes original articles, reviews, and technical notes. The journal is listed in the Science Citation Index Expanded (SCIE) of Thomson Reuters. NET covers all fields for peaceful utilization of nuclear energy and radiation as follows: 1) Reactor Physics 2) Thermal Hydraulics 3) Nuclear Safety 4) Nuclear I&C 5) Nuclear Physics, Fusion, and Laser Technology 6) Nuclear Fuel Cycle and Radioactive Waste Management 7) Nuclear Fuel and Reactor Materials 8) Radiation Application 9) Radiation Protection 10) Nuclear Structural Analysis and Plant Management & Maintenance 11) Nuclear Policy, Economics, and Human Resource Development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信