Lutong Wang , Ziqi Zhang , Fuqiang Xu , Jixian Luo , Chuang Yi , Hong Li , Liquan Chen , Fan Wu
{"title":"3D-printed honeycomb lithium-silicon alloy anodes for stabilized interface in sulfide all-solid-state batteries","authors":"Lutong Wang , Ziqi Zhang , Fuqiang Xu , Jixian Luo , Chuang Yi , Hong Li , Liquan Chen , Fan Wu","doi":"10.1016/j.etran.2025.100476","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state batteries have emerged as a crucial development direction for next-generation energy storage technologies, owing to their high energy density, long cycle life, and excellent safety. However, the most challenging issue of interfacial contact/degradation in solid-state batteries remains unsolved. Herein, a novel Si-C interlocking honeycomb electrode is designed/realized via 3D printing technology. Achieves 98.9 % capacity retention over 2100 cycles at 1C. The honeycomb pore walls form a mortise-tenon structure with the electrolyte to maintain good interfacial contact, while the hard carbon layer isolates the electrolyte from the lithium-silicon interface, thereby stabilizing the growth of the solid electrolyte interphase (SEI) and achieving stress-electrochemical coupling regulation. Moreover, as the honeycomb channels form an interpenetrating structure with the solid electrolyte, a three-dimensional ion transport network is established, shortening the lithium-ion diffusion path, enhancing the interfacial contact between the electrode and solid electrolyte, reducing the risk of lithium dendrite formation, and improving the rate performance of all-solid-state batteries. This approach leverages structural design to enhance material performance, for the first time enabling the compatibility of 3D-printed structured silicon-based anodes with sulfide-based all-solid-state systems, thus providing a scalable solution for next-generation high-energy-density batteries.</div></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"26 ","pages":"Article 100476"},"PeriodicalIF":17.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116825000839","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Solid-state batteries have emerged as a crucial development direction for next-generation energy storage technologies, owing to their high energy density, long cycle life, and excellent safety. However, the most challenging issue of interfacial contact/degradation in solid-state batteries remains unsolved. Herein, a novel Si-C interlocking honeycomb electrode is designed/realized via 3D printing technology. Achieves 98.9 % capacity retention over 2100 cycles at 1C. The honeycomb pore walls form a mortise-tenon structure with the electrolyte to maintain good interfacial contact, while the hard carbon layer isolates the electrolyte from the lithium-silicon interface, thereby stabilizing the growth of the solid electrolyte interphase (SEI) and achieving stress-electrochemical coupling regulation. Moreover, as the honeycomb channels form an interpenetrating structure with the solid electrolyte, a three-dimensional ion transport network is established, shortening the lithium-ion diffusion path, enhancing the interfacial contact between the electrode and solid electrolyte, reducing the risk of lithium dendrite formation, and improving the rate performance of all-solid-state batteries. This approach leverages structural design to enhance material performance, for the first time enabling the compatibility of 3D-printed structured silicon-based anodes with sulfide-based all-solid-state systems, thus providing a scalable solution for next-generation high-energy-density batteries.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.