Weichao Guo , Mohammad Safeeq , Guotao Cui , Philip C. Myint , Panmei Jiang , Han Guo , Michael L. Goulden , Kristen D. Emmett , Stephen C. Hart , Roger C. Bales
{"title":"Enhancing carbon storage through proactively managing fire-prone coniferous mountain forests","authors":"Weichao Guo , Mohammad Safeeq , Guotao Cui , Philip C. Myint , Panmei Jiang , Han Guo , Michael L. Goulden , Kristen D. Emmett , Stephen C. Hart , Roger C. Bales","doi":"10.1016/j.ecolmodel.2025.111332","DOIUrl":null,"url":null,"abstract":"<div><div>Mountain ecosystems typically serve as carbon (C) sinks. However, studies also suggest that they could be C sources due to climate warming, drought and insect-related mortality, wildfires, and management actions. We applied the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), a process-based dynamic vegetation-ecosystem model, to investigate the role of ecosystem management in C storage under Mediterranean climate over the 21<sup>st</sup> century. We modified LPJ-GUESS to include implementing mechanical thinning by vegetation size classes, components, and types along with a new mechanistic fire-occurrence model that accounts for wind speed and lightning ignition. Simulations show that mechanical thinning or prescribed fire performed 5-20 years in advance of a high-severity wildfire reduced direct wildfire C emissions by 38-66 %. Our results also show that long-term management actions repeated every 5-20 years, including thinning relatively small trees (diameters up to 7 inches or ∼178 mm), can maintain stable C levels in the forest and lower dead-fuel amounts. We found that, although prescribed fire mitigated wildfire severity, ecosystem C storage from reduced wildfire emissions can be outweighed by the added emissions from the prescribed fire themselves. Thinning plus removing and sequestering the thinned biomass can ensure that forests act as net C sinks through the end of the 21<sup>st</sup> century. However, addition of prescribed fire is needed to reduce understory and lower the projected extent of high-severity wildfire. Achieving the competing goals of reducing wildfire and making the Sierra Nevada long-term C sink can be advanced through carefully coordinated thinning, sequestration of thinned biomass, and prescribed fire.</div></div>","PeriodicalId":51043,"journal":{"name":"Ecological Modelling","volume":"510 ","pages":"Article 111332"},"PeriodicalIF":3.2000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Modelling","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304380025003187","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mountain ecosystems typically serve as carbon (C) sinks. However, studies also suggest that they could be C sources due to climate warming, drought and insect-related mortality, wildfires, and management actions. We applied the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), a process-based dynamic vegetation-ecosystem model, to investigate the role of ecosystem management in C storage under Mediterranean climate over the 21st century. We modified LPJ-GUESS to include implementing mechanical thinning by vegetation size classes, components, and types along with a new mechanistic fire-occurrence model that accounts for wind speed and lightning ignition. Simulations show that mechanical thinning or prescribed fire performed 5-20 years in advance of a high-severity wildfire reduced direct wildfire C emissions by 38-66 %. Our results also show that long-term management actions repeated every 5-20 years, including thinning relatively small trees (diameters up to 7 inches or ∼178 mm), can maintain stable C levels in the forest and lower dead-fuel amounts. We found that, although prescribed fire mitigated wildfire severity, ecosystem C storage from reduced wildfire emissions can be outweighed by the added emissions from the prescribed fire themselves. Thinning plus removing and sequestering the thinned biomass can ensure that forests act as net C sinks through the end of the 21st century. However, addition of prescribed fire is needed to reduce understory and lower the projected extent of high-severity wildfire. Achieving the competing goals of reducing wildfire and making the Sierra Nevada long-term C sink can be advanced through carefully coordinated thinning, sequestration of thinned biomass, and prescribed fire.
期刊介绍:
The journal is concerned with the use of mathematical models and systems analysis for the description of ecological processes and for the sustainable management of resources. Human activity and well-being are dependent on and integrated with the functioning of ecosystems and the services they provide. We aim to understand these basic ecosystem functions using mathematical and conceptual modelling, systems analysis, thermodynamics, computer simulations, and ecological theory. This leads to a preference for process-based models embedded in theory with explicit causative agents as opposed to strictly statistical or correlative descriptions. These modelling methods can be applied to a wide spectrum of issues ranging from basic ecology to human ecology to socio-ecological systems. The journal welcomes research articles, short communications, review articles, letters to the editor, book reviews, and other communications. The journal also supports the activities of the [International Society of Ecological Modelling (ISEM)](http://www.isemna.org/).