A biodegradable antimicrobial oligomer-containing hydrogel for drug-resistant bacteria-infected skin wound treatment

Min Wang , Xinyun Zeng , Xiuping Wang , Zhiyuan Zhang , Siwei Guo , Yang Deng , Xin Li , Lin Yao , Jiaqi Li , Wing-Leung Wong , Yugang Bai , Xinxin Feng
{"title":"A biodegradable antimicrobial oligomer-containing hydrogel for drug-resistant bacteria-infected skin wound treatment","authors":"Min Wang ,&nbsp;Xinyun Zeng ,&nbsp;Xiuping Wang ,&nbsp;Zhiyuan Zhang ,&nbsp;Siwei Guo ,&nbsp;Yang Deng ,&nbsp;Xin Li ,&nbsp;Lin Yao ,&nbsp;Jiaqi Li ,&nbsp;Wing-Leung Wong ,&nbsp;Yugang Bai ,&nbsp;Xinxin Feng","doi":"10.1016/j.pscia.2025.100091","DOIUrl":null,"url":null,"abstract":"<div><div>Antibiotic resistance poses a serious global threat, contributing to severe clinical outcomes such as skin and soft tissue infections. Effective treatment of these infections requires both potent antimicrobial activity against resistant pathogens and wound dressings that can conform closely to the wound site. Degradable antimicrobial polymers offer a promising solution to this challenge. Unlike traditional antibiotic-loaded dressings, which often fail against multidrug-resistant (MDR) bacteria, antimicrobial polymers can effectively overcome resistance barriers. Moreover, these polymers can be easily incorporated into wound dressing materials—hydrogels being a particularly advantageous platform due to their biocompatibility and wound-conforming properties. In this study, we developed a modular strategy to integrate a biodegradable cationic antimicrobial oligomer, oligoamidine (<strong>OA1</strong>), into a thermo-responsive hydrogel. <strong>OA1</strong> exerts a triple antibacterial mechanism involving membrane disruption, DNA binding, and ROS generation. The resulting hydrogel system can be conveniently formulated by simple mixing and undergoes a solution-gel transition at body temperature, enabling easy application to infected skin wounds. Importantly, the hydrogel matrix does not impair the bactericidal efficacy of <strong>OA1</strong>, preserving its full antimicrobial potential. This synergistic system offers an effective and user-friendly approach for treating wounds infected with MDR pathogens.</div></div>","PeriodicalId":101012,"journal":{"name":"Pharmaceutical Science Advances","volume":"3 ","pages":"Article 100091"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773216925000297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic resistance poses a serious global threat, contributing to severe clinical outcomes such as skin and soft tissue infections. Effective treatment of these infections requires both potent antimicrobial activity against resistant pathogens and wound dressings that can conform closely to the wound site. Degradable antimicrobial polymers offer a promising solution to this challenge. Unlike traditional antibiotic-loaded dressings, which often fail against multidrug-resistant (MDR) bacteria, antimicrobial polymers can effectively overcome resistance barriers. Moreover, these polymers can be easily incorporated into wound dressing materials—hydrogels being a particularly advantageous platform due to their biocompatibility and wound-conforming properties. In this study, we developed a modular strategy to integrate a biodegradable cationic antimicrobial oligomer, oligoamidine (OA1), into a thermo-responsive hydrogel. OA1 exerts a triple antibacterial mechanism involving membrane disruption, DNA binding, and ROS generation. The resulting hydrogel system can be conveniently formulated by simple mixing and undergoes a solution-gel transition at body temperature, enabling easy application to infected skin wounds. Importantly, the hydrogel matrix does not impair the bactericidal efficacy of OA1, preserving its full antimicrobial potential. This synergistic system offers an effective and user-friendly approach for treating wounds infected with MDR pathogens.
一种用于耐药细菌感染皮肤伤口治疗的可生物降解的含抗菌低聚物水凝胶
抗生素耐药性构成严重的全球威胁,导致严重的临床结果,如皮肤和软组织感染。这些感染的有效治疗既需要对耐药病原体的有效抗菌活性,也需要与伤口部位紧密贴合的伤口敷料。可降解的抗菌聚合物为这一挑战提供了一个有希望的解决方案。与传统的抗生素敷料不同,抗菌素聚合物可以有效地克服耐多药(MDR)细菌。此外,这些聚合物可以很容易地结合到伤口敷料中——由于它们的生物相容性和伤口一致性,水凝胶是一个特别有利的平台。在这项研究中,我们开发了一种模块化策略,将可生物降解的阳离子抗菌低聚物寡聚脒(OA1)整合到热响应性水凝胶中。OA1具有膜破坏、DNA结合和ROS生成三重抗菌机制。由此产生的水凝胶系统可以通过简单的混合来方便地配制,并在体温下经历溶液-凝胶转变,从而易于应用于感染的皮肤伤口。重要的是,水凝胶基质不会损害OA1的杀菌功效,保留其全部的抗菌潜力。这种协同系统为治疗感染耐多药病原体的伤口提供了一种有效和用户友好的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信