Anna Carolina Resende , Catarina Vinagre , Alice Rogers
{"title":"Exposure of an intertidal fish to simulated heatwaves and suspended sediment – a multistressor approach","authors":"Anna Carolina Resende , Catarina Vinagre , Alice Rogers","doi":"10.1016/j.jtherbio.2025.104260","DOIUrl":null,"url":null,"abstract":"<div><div>Extreme climatic events, such as marine heatwaves (MHW) and increased suspended sediment concentration (SSC), are increasing in frequency and intensity, resulting in sudden changes to coastal environments, especially intertidal zones. Intertidal animals experience conditions that substantially fluctuate over temporal and spatial scales and therefore require the ability to physiologically tolerate these fluctuations. Since multiple stressors often co-occur and natural populations tend to respond to local environmental fluctuations, we aimed to investigate individual and combined effects of MHW and increased suspended sedimentation in <em>Forsterygion lapillum</em> from two neighbouring coastal areas with distinct water temperatures and wave current regimes by assessing fish oxygen consumption rate, mortality and weight loss. Results showed that in both <em>F. lapillum</em> populations, oxygen consumption rate and survival probability were unaffected by any treatment. However, fish from both populations lost weight during heatwave and multistressor treatments (i.e. heatwave and sedimentation), while fish from the sedimentation treatment alone did not lose weight. Although a direct effect on fish respiration was not found, our results indicate that <em>F. lapillum</em> performance is reduced when exposed to heatwaves individually and in combination with increased sediment suspension. Weight loss indicates that fish experiencing these stressors were unable to meet their metabolic demands.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"132 ","pages":"Article 104260"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456525002177","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Extreme climatic events, such as marine heatwaves (MHW) and increased suspended sediment concentration (SSC), are increasing in frequency and intensity, resulting in sudden changes to coastal environments, especially intertidal zones. Intertidal animals experience conditions that substantially fluctuate over temporal and spatial scales and therefore require the ability to physiologically tolerate these fluctuations. Since multiple stressors often co-occur and natural populations tend to respond to local environmental fluctuations, we aimed to investigate individual and combined effects of MHW and increased suspended sedimentation in Forsterygion lapillum from two neighbouring coastal areas with distinct water temperatures and wave current regimes by assessing fish oxygen consumption rate, mortality and weight loss. Results showed that in both F. lapillum populations, oxygen consumption rate and survival probability were unaffected by any treatment. However, fish from both populations lost weight during heatwave and multistressor treatments (i.e. heatwave and sedimentation), while fish from the sedimentation treatment alone did not lose weight. Although a direct effect on fish respiration was not found, our results indicate that F. lapillum performance is reduced when exposed to heatwaves individually and in combination with increased sediment suspension. Weight loss indicates that fish experiencing these stressors were unable to meet their metabolic demands.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles