Log-transformed approaches to variance estimation using auxiliary data

IF 2.5 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Poonam Singh , Prayas Sharma , Anjali Singh , Tolga Zaman , Walid Emam
{"title":"Log-transformed approaches to variance estimation using auxiliary data","authors":"Poonam Singh ,&nbsp;Prayas Sharma ,&nbsp;Anjali Singh ,&nbsp;Tolga Zaman ,&nbsp;Walid Emam","doi":"10.1016/j.jrras.2025.101913","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable statistical inference requires accurate population variance estimate, especially in domains where measurement limitations and intrinsic variability impact data. Applying traditional estimators to skewed or heavy-tailed populations frequently results in inefficient results. We provide a novel class of generalized logarithmic variance estimators that use logarithmic transformations and auxiliary data to stabilize variance and improve estimator performance in order to overcome this constraint. We calculate the suggested estimators’ bias and Mean Squared Error (MSE) expressions and assess their effectiveness using comprehensive Monte Carlo simulations with different sample sizes. The suggested estimator, <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mn>1</mn><mo>−</mo></mrow></msub></math></span>, produces a significant reduction in MSE up to 57% increase in efficiency (PRE) at n=600 when compared to the usual estimator. The suggested methodologies resilience and suitability for high-variability situations are further confirmed using real-world datasets. In every context, the findings show that the suggested estimators perform better than the current ones in terms of lower MSE and greater PRE. This research demonstrates how logarithmic transformations may be used to create variance estimators that are more accurate and effective, especially when auxiliary variables are provided.</div></div>","PeriodicalId":16920,"journal":{"name":"Journal of Radiation Research and Applied Sciences","volume":"18 4","pages":"Article 101913"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research and Applied Sciences","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1687850725006259","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable statistical inference requires accurate population variance estimate, especially in domains where measurement limitations and intrinsic variability impact data. Applying traditional estimators to skewed or heavy-tailed populations frequently results in inefficient results. We provide a novel class of generalized logarithmic variance estimators that use logarithmic transformations and auxiliary data to stabilize variance and improve estimator performance in order to overcome this constraint. We calculate the suggested estimators’ bias and Mean Squared Error (MSE) expressions and assess their effectiveness using comprehensive Monte Carlo simulations with different sample sizes. The suggested estimator, Tr1, produces a significant reduction in MSE up to 57% increase in efficiency (PRE) at n=600 when compared to the usual estimator. The suggested methodologies resilience and suitability for high-variability situations are further confirmed using real-world datasets. In every context, the findings show that the suggested estimators perform better than the current ones in terms of lower MSE and greater PRE. This research demonstrates how logarithmic transformations may be used to create variance estimators that are more accurate and effective, especially when auxiliary variables are provided.
利用辅助数据进行方差估计的对数变换方法
可靠的统计推断需要准确的总体方差估计,特别是在测量限制和内在变异性影响数据的领域。将传统的估计方法应用于偏态或重尾种群往往会导致低效的结果。为了克服这一限制,我们提供了一类新的广义对数方差估计器,它使用对数变换和辅助数据来稳定方差并提高估计器的性能。我们计算了建议估计器的偏差和均方误差(MSE)表达式,并使用不同样本量的综合蒙特卡罗模拟评估了它们的有效性。与通常的估计器相比,建议的估计器Tr1−在n=600时显著降低了MSE,效率(PRE)提高了57%。使用真实世界的数据集进一步证实了所建议的方法在高可变性情况下的弹性和适用性。在每种情况下,研究结果表明,在较低的MSE和较高的PRE方面,建议的估计器比当前的估计器表现更好。本研究演示了如何使用对数变换来创建更准确和有效的方差估计器,特别是当提供辅助变量时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
5.90%
发文量
130
审稿时长
16 weeks
期刊介绍: Journal of Radiation Research and Applied Sciences provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and applications of nuclear, radiation and isotopes in biology, medicine, drugs, biochemistry, microbiology, agriculture, entomology, food technology, chemistry, physics, solid states, engineering, environmental and applied sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信