Deriving a global troposphere model for space geodetic simulations based on an ML ensemble featuring uncertainty quantification

IF 4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
Matthias Schartner
{"title":"Deriving a global troposphere model for space geodetic simulations based on an ML ensemble featuring uncertainty quantification","authors":"Matthias Schartner","doi":"10.1007/s00190-025-01996-w","DOIUrl":null,"url":null,"abstract":"<p>This work presents a global, three-dimensional (latitude–longitude–time) model of the refractive index structure constant (<span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1240.1 994.3\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span>), enabling the spatiotemporally correlated simulation of tropospheric delays for space geodetic observations at radio frequencies. The model is based on an ensemble of 100 XGBoost models trained on 21 years of observations from 18,500 GNSS stations, using meteorological variables from ERA5 as features. It effectively captures high-frequency spatial and temporal variations, achieving a mean absolute error of <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.409ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -949.2 4492.4 1037.3\" width=\"10.434ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"1279\" xlink:href=\"#MJMAIN-32\" y=\"0\"></use><g transform=\"translate(1946,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-6D\" y=\"0\"></use><g transform=\"translate(833,362)\"><use transform=\"scale(0.707)\" x=\"0\" xlink:href=\"#MJMAIN-2212\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"778\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1279\" xlink:href=\"#MJMAIN-2F\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1779\" xlink:href=\"#MJMAIN-33\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/tex\">0.52\\,\\hbox {m}^{-1/3}</script></span>. To simplify the use of the model, monthly average <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"2.309ex\" role=\"img\" style=\"vertical-align: -0.505ex;\" viewbox=\"0 -777 1240.1 994.3\" width=\"2.88ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use x=\"0\" xlink:href=\"#MJMATHI-43\" y=\"0\"></use><use transform=\"scale(0.707)\" x=\"1011\" xlink:href=\"#MJMATHI-6E\" y=\"-213\"></use></g></svg></span><script type=\"math/tex\">C_n</script></span> values are computed on a regular <span><span style=\"\"></span><span style=\"font-size: 100%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.909ex\" role=\"img\" style=\"vertical-align: -0.205ex;\" viewbox=\"0 -733.9 3781.9 822.1\" width=\"8.784ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use><use x=\"1501\" xlink:href=\"#MJMAIN-D7\" y=\"0\"></use><g transform=\"translate(2502,0)\"><use xlink:href=\"#MJMAIN-32\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-35\" y=\"0\"></use></g></g></svg></span><script type=\"math/tex\">2.5\\times 2.5</script></span> degree grid, which are sufficiently accurate for most simulation studies. Besides, the model provides a Monte Carlo-based measure for the prediction uncertainty based on the XGBoost ensemble spread, which is revealed to be primarily driven by feature augmentation using ensemble spread information from ERA5. The model is validated both independently on 2500 GNSS stations over 3 years and externally through very long baseline interferometry simulations. The results demonstrate a significant improvement over current state-of-the-art simulation approaches.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"32 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-025-01996-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents a global, three-dimensional (latitude–longitude–time) model of the refractive index structure constant (), enabling the spatiotemporally correlated simulation of tropospheric delays for space geodetic observations at radio frequencies. The model is based on an ensemble of 100 XGBoost models trained on 21 years of observations from 18,500 GNSS stations, using meteorological variables from ERA5 as features. It effectively captures high-frequency spatial and temporal variations, achieving a mean absolute error of . To simplify the use of the model, monthly average values are computed on a regular degree grid, which are sufficiently accurate for most simulation studies. Besides, the model provides a Monte Carlo-based measure for the prediction uncertainty based on the XGBoost ensemble spread, which is revealed to be primarily driven by feature augmentation using ensemble spread information from ERA5. The model is validated both independently on 2500 GNSS stations over 3 years and externally through very long baseline interferometry simulations. The results demonstrate a significant improvement over current state-of-the-art simulation approaches.

基于不确定量化ML集合的空间大地测量模拟全球对流层模型的推导
这项工作提出了一个全球的、三维的(纬度-经度-时间)折射率结构常数(C_n)模型,使对流层延迟的时空相关模拟能够用于无线电频率的空间大地测量观测。该模型基于100个XGBoost模型的集合,这些模型是根据来自18500个GNSS站点的21年观测数据训练而成的,使用ERA5的气象变量作为特征。它有效地捕获了高频空间和时间变化,平均绝对误差为0.52\,\hbox {m}^{-1/3}。为了简化模型的使用,月平均C_n值在一个规则的2.5\ × 2.5度网格上计算,这对于大多数模拟研究来说足够准确。此外,该模型还提供了基于蒙特卡罗的基于XGBoost集合扩展的预测不确定性度量,该模型主要由ERA5的集合扩展信息的特征增强驱动。该模型在2500个GNSS站点上独立进行了3年的验证,并通过非常长的基线干涉测量模拟进行了外部验证。结果表明,与目前最先进的模拟方法相比,该方法有了显著的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信