Stacked pseudo-convergent sequences and polynomial Dedekind domains

IF 1 1区 数学 Q2 MATHEMATICS
Giulio Peruginelli
{"title":"Stacked pseudo-convergent sequences and polynomial Dedekind domains","authors":"Giulio Peruginelli","doi":"10.2140/ant.2025.19.1947","DOIUrl":null,"url":null,"abstract":"<p>Let <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi>\n<mo>∈</mo>\n<mi>ℤ</mi></math> be a prime, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> a fixed algebraic closure of the field of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic numbers and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> the absolute integral closure of the ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>p</mi></math>-adic integers. Given a residually algebraic torsion extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo></mrow></msub></math> to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo></math>, by Kaplansky’s characterization of immediate extensions of valued fields, there exists a pseudo-convergent sequence of transcendental type <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi>\n<mo>=</mo> <msub><mrow><mo stretchy=\"false\">{</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">}</mo></mrow><mrow><mi>n</mi><mo>∈</mo><mi>ℕ</mi></mrow></msub>\n<mo>⊂</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> such that </p>\n<div><math display=\"block\" xmlns=\"http://www.w3.org/1998/Math/MathML\">\n<mi>W</mi>\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>E</mi></mrow></msub>\n<mo>=</mo>\n<mo stretchy=\"false\">{</mo><mi>ϕ</mi>\n<mo>∈</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo>\n<mo>∈</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover><!--mstyle--><mtext> for all sufficiently large </mtext><!--/mstyle--><mi>n</mi>\n<mo>∈</mo>\n<mi>ℕ</mi><mo stretchy=\"false\">}</mo><mo>.</mo>\n</math>\n</div>\n<p> We show here that we may assume that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> is stacked, in the sense that, for each <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>n</mi>\n<mo>∈</mo>\n<mi>ℕ</mi></math>, the residue field (resp. the value group) of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover>\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">)</mo></math> is contained in the residue field (resp. the value group) of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"false\"><mrow><msub><mrow><mi>ℤ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover>\n<mo>∩</mo> <msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>1</mn></mrow></msub><mo stretchy=\"false\">)</mo></math>; this property of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>E</mi></math> allows us to describe the residue field and value group of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math>. In particular, if <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi></math> is a DVR, then there exists <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> in the completion <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math> of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>t</mi><mo stretchy=\"false\">]</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math>, <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> transcendental over <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi></math>, such that <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi>\n<mo>=</mo> <msub><mrow><mi>ℤ</mi></mrow><mrow><mo stretchy=\"false\">(</mo><mi>p</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>α</mi></mrow></msub>\n<mo>=</mo>\n<mo stretchy=\"false\">{</mo><mi>ϕ</mi>\n<mo>∈</mo>\n<mi>ℚ</mi><mo stretchy=\"false\">(</mo><mi>X</mi><mo stretchy=\"false\">)</mo><mo>∣</mo><mi>ϕ</mi><mo stretchy=\"false\">(</mo><mi>α</mi><mo stretchy=\"false\">)</mo>\n<mo>∈</mo> <msub><mrow><mi mathvariant=\"double-struck\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub><mo stretchy=\"false\">}</mo></math>, where <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi mathvariant=\"double-struck\">𝕆</mi></mrow><mrow><mi>p</mi></mrow></msub></math> is the unique local ring of <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mrow><mi>ℂ</mi></mrow><mrow><mi>p</mi></mrow></msub></math>; <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>α</mi></math> belongs to <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mo stretchy=\"false\">[</mo><mi>t</mi><mo stretchy=\"false\">]</mo><mover accent=\"false\"><mrow><msub><mrow><mi>ℚ</mi></mrow><mrow><mi>p</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover></math> if and only if the residue field extension <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>W</mi><mo>∕</mo><mi>M</mi>\n<mo>⊇</mo>\n<mi>ℤ</mi><mo>∕</mo><mi>p</mi><mi>ℤ</mi></math> is finite. As an application, we provide a full characterization of the Dedekind domains between <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℤ</mi><mo stretchy=\"false\">[</mo><mi>X</mi><mo stretchy=\"false\">]</mo></math> and <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mi>ℚ</mi><mo stretchy=\"false\">[</mo><mi>X</mi><mo stretchy=\"false\">]</mo></math>. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"62 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2025.19.1947","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let p be a prime, p¯ a fixed algebraic closure of the field of p-adic numbers and p¯ the absolute integral closure of the ring of p-adic integers. Given a residually algebraic torsion extension W of (p) to (X), by Kaplansky’s characterization of immediate extensions of valued fields, there exists a pseudo-convergent sequence of transcendental type E = {sn}n p¯ such that

W = (p),E = {ϕ (X)ϕ(sn) p¯ for all sufficiently large n }.

We show here that we may assume that E is stacked, in the sense that, for each n , the residue field (resp. the value group) of p¯ p(sn) is contained in the residue field (resp. the value group) of p¯ p(sn+1); this property of E allows us to describe the residue field and value group of W. In particular, if W is a DVR, then there exists α in the completion p of [t]p¯, α transcendental over , such that W = (p),α = {ϕ (X)ϕ(α) 𝕆p}, where 𝕆p is the unique local ring of p; α belongs to [t]p¯ if and only if the residue field extension WM p is finite. As an application, we provide a full characterization of the Dedekind domains between [X] and [X].

叠置伪收敛序列与多项式Dedekind域
设p∈0是素数,π¯p进数域的固定代数闭包,p¯p进整数环的绝对积分闭包。给定一个残差代数挠性扩展W,由卡普兰斯基关于值域的直接扩展的刻划,存在一个超越型的伪收敛序列E={sn}n∈_1 _1∈φ φ φ,使得W= φ (p),E={φ∈φ (X)∣φ (sn)∈φ φ,对于所有足够大的n∈_1}。我们在这里表明,我们可以假设E是堆叠的,在某种意义上,对于每个n∈n,剩余域(resp。p¯∩π (sn)的值群)包含在剩余域(resp. sn)中。p¯∩π (sn+1)的值群;E的这个性质允许我们描述W的残馀域和值群。特别地,如果W是一个DVR,则在[t] π φ¯的补全中存在α,α超越于π,使得W= 0 (p),α={φ∈π (X)∣φ (α)∈𝕆p},其中𝕆p是∈p的唯一局部环;α属于[t] π¯当且仅当剩余域扩展W / M是有限的。作为一种应用,我们给出了一个完整的描述在n [X]和n [X]之间的Dedekind域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
7.70%
发文量
52
审稿时长
6-12 weeks
期刊介绍: ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms. The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信