Multimode tunable atomically thin vibrating-channel-transistor resonators with ultra-efficient electromechanical transduction

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Rui Yang, Jaesung Lee, Philip X.-L. Feng
{"title":"Multimode tunable atomically thin vibrating-channel-transistor resonators with ultra-efficient electromechanical transduction","authors":"Rui Yang, Jaesung Lee, Philip X.-L. Feng","doi":"10.1063/5.0238991","DOIUrl":null,"url":null,"abstract":"Transistors based on two-dimensional (2D) semiconductors have emerged as promising candidates for ultra-scaled computing devices. By suspending the 2D channels and inducing mechanical resonance modes in the 2D semiconducting membranes, they form 2D vibrating-channel-transistor (VCT) resonators with ultralow power consumption. Yet on-chip electronic detection and tuning of multimode resonances in these 2D VCT resonators have been challenging due to the ultrasmall vibration amplitudes and rich multimode dynamics at radio frequencies (RF). Here, we leverage the atomic-scale thickness, ultrahigh strain limit, as well as strain-engineering effects on band structure and carrier mobility of 2D molybdenum disulfide (MoS2) sheets, and experimentally demonstrate multimode 2D MoS2 VCT resonators. Using all-electronic signal transduction, we show single-, bi-, and tri-layer MoS2 VCT resonators with up to the 14th resonance mode, thanks to the ultra-efficient electromechanical transduction enabled by internal multiphysics coupling. Measured gate dependency of multimode resonances exhibits frequency tuning ranges of Δf/f0 up to 326%. These 2D VCT resonators provide a unique platform for engineering on-chip integrated and ultra-scaled RF signal transduction, sensing, and analog computing elements with multimode and hyperspectral capabilities.","PeriodicalId":8200,"journal":{"name":"Applied physics reviews","volume":"8 1","pages":""},"PeriodicalIF":11.6000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied physics reviews","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0238991","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Transistors based on two-dimensional (2D) semiconductors have emerged as promising candidates for ultra-scaled computing devices. By suspending the 2D channels and inducing mechanical resonance modes in the 2D semiconducting membranes, they form 2D vibrating-channel-transistor (VCT) resonators with ultralow power consumption. Yet on-chip electronic detection and tuning of multimode resonances in these 2D VCT resonators have been challenging due to the ultrasmall vibration amplitudes and rich multimode dynamics at radio frequencies (RF). Here, we leverage the atomic-scale thickness, ultrahigh strain limit, as well as strain-engineering effects on band structure and carrier mobility of 2D molybdenum disulfide (MoS2) sheets, and experimentally demonstrate multimode 2D MoS2 VCT resonators. Using all-electronic signal transduction, we show single-, bi-, and tri-layer MoS2 VCT resonators with up to the 14th resonance mode, thanks to the ultra-efficient electromechanical transduction enabled by internal multiphysics coupling. Measured gate dependency of multimode resonances exhibits frequency tuning ranges of Δf/f0 up to 326%. These 2D VCT resonators provide a unique platform for engineering on-chip integrated and ultra-scaled RF signal transduction, sensing, and analog computing elements with multimode and hyperspectral capabilities.
具有超高效机电转导的多模可调谐原子薄振动通道晶体管谐振器
基于二维(2D)半导体的晶体管已成为超大规模计算设备的有希望的候选者。通过悬浮二维通道并在二维半导体膜中诱导机械共振模式,它们形成了具有超低功耗的二维振动通道晶体管(VCT)谐振器。然而,由于这些二维VCT谐振器在射频(RF)下具有极小的振动幅度和丰富的多模动力学,因此片上电子检测和多模共振的调谐一直具有挑战性。本文利用原子尺度厚度、超高应变极限以及应变工程对二维二硫化钼(MoS2)片的能带结构和载流子迁移率的影响,实验证明了二维二硫化钼(MoS2)片的多模VCT谐振器。利用全电子信号转导,我们展示了单层、双层和三层MoS2 VCT谐振器,由于内部多物理场耦合实现了超高效的机电转导,因此具有高达第14共振模式。测量的多模共振的门相关性显示频率调谐范围为Δf/f0至326%。这些2D VCT谐振器为具有多模和高光谱功能的工程片上集成和超尺度RF信号转导,传感和模拟计算元件提供了独特的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied physics reviews
Applied physics reviews PHYSICS, APPLIED-
CiteScore
22.50
自引率
2.00%
发文量
113
审稿时长
2 months
期刊介绍: Applied Physics Reviews (APR) is a journal featuring articles on critical topics in experimental or theoretical research in applied physics and applications of physics to other scientific and engineering branches. The publication includes two main types of articles: Original Research: These articles report on high-quality, novel research studies that are of significant interest to the applied physics community. Reviews: Review articles in APR can either be authoritative and comprehensive assessments of established areas of applied physics or short, timely reviews of recent advances in established fields or emerging areas of applied physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信