Event-triggered optimal control for modular reconfigurable manipulators with input constraints based on model predictive control.

IF 6.5
Fan Zhou, Yifan Zhang, Tianhao Ma
{"title":"Event-triggered optimal control for modular reconfigurable manipulators with input constraints based on model predictive control.","authors":"Fan Zhou, Yifan Zhang, Tianhao Ma","doi":"10.1016/j.isatra.2025.08.041","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes an event-triggered optimal control method for modular reconfigurable manipulators(MRMs) based on model predictive control(MPC). By using a decentralized optimization method based on MPC, the optimal control problem of MRMs is transformed into independent optimization tasks for each module, while a global MPC optimization framework is utilized to coordinate the modules, ultimately optimizing the overall performance of the entire system. In order to avoid the safety hazards caused by excessive torque, hyperbolic tangent function is added to constrain the input torque. Considering the inaccuracies in the modeling process, adaptive dynamic programming (ADP) is introduced into MPC to improve the robustness of the system. A critical neural network (NN) is designed to solve the Hamilton-Jacobi-Bellman (HJB) equation, yielding the system's optimal solution. Lyapunov theory is used to prove that the trajectory tracking error is uniformly ultimately bounded (UUB). Finally, the comparative experimental results demonstrate that the proposed method achieves significant improvements in reducing tracking error, minimizing resource consumption, and enhancing constrained torque capability.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2025.08.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an event-triggered optimal control method for modular reconfigurable manipulators(MRMs) based on model predictive control(MPC). By using a decentralized optimization method based on MPC, the optimal control problem of MRMs is transformed into independent optimization tasks for each module, while a global MPC optimization framework is utilized to coordinate the modules, ultimately optimizing the overall performance of the entire system. In order to avoid the safety hazards caused by excessive torque, hyperbolic tangent function is added to constrain the input torque. Considering the inaccuracies in the modeling process, adaptive dynamic programming (ADP) is introduced into MPC to improve the robustness of the system. A critical neural network (NN) is designed to solve the Hamilton-Jacobi-Bellman (HJB) equation, yielding the system's optimal solution. Lyapunov theory is used to prove that the trajectory tracking error is uniformly ultimately bounded (UUB). Finally, the comparative experimental results demonstrate that the proposed method achieves significant improvements in reducing tracking error, minimizing resource consumption, and enhancing constrained torque capability.

基于模型预测控制的输入约束模块化可重构机械臂事件触发最优控制。
提出了一种基于模型预测控制(MPC)的模块化可重构机械臂事件触发最优控制方法。采用基于MPC的分散优化方法,将mrm的最优控制问题转化为每个模块的独立优化任务,并利用全局MPC优化框架对各模块进行协调,最终实现整个系统的整体性能优化。为了避免转矩过大带来的安全隐患,加入双曲正切函数约束输入转矩。考虑到建模过程中的不准确性,在MPC中引入自适应动态规划(ADP)来提高系统的鲁棒性。设计了一个临界神经网络(NN)来求解Hamilton-Jacobi-Bellman (HJB)方程,得到系统的最优解。利用李雅普诺夫理论证明了轨迹跟踪误差是一致最终有界的。最后,对比实验结果表明,该方法在减小跟踪误差、最小化资源消耗和增强约束转矩能力方面取得了显著的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信