SNAKE: A modular realistic fMRI data simulator from the space-time domain to k-space and back.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-09-02 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.121
Pierre-Antoine Comby, Alexandre Vignaud, Philippe Ciuciu
{"title":"SNAKE: A modular realistic fMRI data simulator from the space-time domain to k-space and back.","authors":"Pierre-Antoine Comby, Alexandre Vignaud, Philippe Ciuciu","doi":"10.1162/IMAG.a.121","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a new, modular, open-source, Python-based 3D+time realistic functional magnetic resonance imaging (fMRI) data simulation software. SNAKE or <i>S</i>imulator from <i>N</i>eurovascular coupling to <i>A</i>cquisition of <i>K</i>-space data for <i>E</i>xploration of fMRI acquisition techniques. It is the first simulator to simulate the entire chain of fMRI data acquisition, from the spatio-temporal design of evoked brain responses to various 3D sampling strategies of k-space data with multiple coils. We now have the possibility to extend the forward acquisition model to different noise and artifact sources while remaining memory-efficient. Using this in-silico setup, we can provide a realistic and reproducible ground truth for fMRI reconstruction methods in 3D accelerated acquisition settings and explore the influence of critical parameters. This includes the acceleration factor and signal-to-noise ratio (SNR), on downstream tasks of image reconstruction and statistical analysis of evoked brain activity. In this paper, we present three scenarios of increasing complexity to showcase the flexibility, versatility, and fidelity of SNAKE: From a temporally fixed full 3D Cartesian to various 3D non-Cartesian sampling patterns, we can compare-with reproducibility guarantees-how experimental paradigms, acquisition strategies, and reconstruction methods contribute and interact together, affecting the downstream statistical analysis.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406052/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a new, modular, open-source, Python-based 3D+time realistic functional magnetic resonance imaging (fMRI) data simulation software. SNAKE or Simulator from Neurovascular coupling to Acquisition of K-space data for Exploration of fMRI acquisition techniques. It is the first simulator to simulate the entire chain of fMRI data acquisition, from the spatio-temporal design of evoked brain responses to various 3D sampling strategies of k-space data with multiple coils. We now have the possibility to extend the forward acquisition model to different noise and artifact sources while remaining memory-efficient. Using this in-silico setup, we can provide a realistic and reproducible ground truth for fMRI reconstruction methods in 3D accelerated acquisition settings and explore the influence of critical parameters. This includes the acceleration factor and signal-to-noise ratio (SNR), on downstream tasks of image reconstruction and statistical analysis of evoked brain activity. In this paper, we present three scenarios of increasing complexity to showcase the flexibility, versatility, and fidelity of SNAKE: From a temporally fixed full 3D Cartesian to various 3D non-Cartesian sampling patterns, we can compare-with reproducibility guarantees-how experimental paradigms, acquisition strategies, and reconstruction methods contribute and interact together, affecting the downstream statistical analysis.

SNAKE:从时空域到k空间再返回的模块化逼真fMRI数据模拟器。
我们提出了一个新的,模块化的,开源的,基于python的3D+时间真实感功能磁共振成像(fMRI)数据模拟软件。从神经血管耦合到k空间数据采集的SNAKE或模拟器,用于探索fMRI采集技术。这是第一个模拟整个fMRI数据采集链的模拟器,从诱发脑反应的时空设计到多种k空间数据的多线圈三维采样策略。我们现在有可能将前向获取模型扩展到不同的噪声和伪源,同时保持内存效率。利用这种芯片设置,我们可以在3D加速采集设置中为fMRI重建方法提供现实和可重复的基础事实,并探索关键参数的影响。这包括加速因子和信噪比(SNR),对下游任务的图像重建和诱发脑活动的统计分析。在本文中,我们提出了三种日益复杂的场景来展示SNAKE的灵活性、多功能性和保真度:从暂时固定的全3D笛卡尔到各种3D非笛卡尔采样模式,我们可以比较实验范式、获取策略和重建方法如何共同贡献和相互作用,影响下游的统计分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信