Searchlight-based trial-wise fMRI decoding in the presence of trial-by-trial correlations.

Imaging neuroscience (Cambridge, Mass.) Pub Date : 2025-09-02 eCollection Date: 2025-01-01 DOI:10.1162/IMAG.a.131
Joram Soch
{"title":"Searchlight-based trial-wise fMRI decoding in the presence of trial-by-trial correlations.","authors":"Joram Soch","doi":"10.1162/IMAG.a.131","DOIUrl":null,"url":null,"abstract":"<p><p>In multivariate pattern analysis (MVPA) for functional magnetic resonance imaging (fMRI) signals, trial-wise response amplitudes are sometimes estimated using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related designs with trials closely spaced in time, those estimates can be highly correlated due to the temporally smoothed shape of the hemodynamic response function. In previous work (Soch et al., 2020), we have proposed inverse transformed encoding modeling (ITEM), a principled approach for trial-wise decoding from fMRI signals in the presence of trial-by-trial correlations. Here, we (i) perform simulation studies addressing its performance for multivariate signals and (ii) present searchlight-based ITEM analysis-which allows to predict a variable of interest from the vicinity of each voxel in the brain. We empirically validate the approach by confirming <i>a priori</i> plausible hypotheses about the well-understood visual system.</p>","PeriodicalId":73341,"journal":{"name":"Imaging neuroscience (Cambridge, Mass.)","volume":"3 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12406051/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging neuroscience (Cambridge, Mass.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/IMAG.a.131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In multivariate pattern analysis (MVPA) for functional magnetic resonance imaging (fMRI) signals, trial-wise response amplitudes are sometimes estimated using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related designs with trials closely spaced in time, those estimates can be highly correlated due to the temporally smoothed shape of the hemodynamic response function. In previous work (Soch et al., 2020), we have proposed inverse transformed encoding modeling (ITEM), a principled approach for trial-wise decoding from fMRI signals in the presence of trial-by-trial correlations. Here, we (i) perform simulation studies addressing its performance for multivariate signals and (ii) present searchlight-based ITEM analysis-which allows to predict a variable of interest from the vicinity of each voxel in the brain. We empirically validate the approach by confirming a priori plausible hypotheses about the well-understood visual system.

基于探照灯的试验fMRI解码在试验间相关性的存在。
在功能磁共振成像(fMRI)信号的多变量模式分析(MVPA)中,试验反应幅度有时使用一般线性模型(GLM)估计,每个试验有一个开始回归量。当使用快速事件相关设计,试验时间间隔紧密时,由于血流动力学响应函数的时间平滑形状,这些估计可能高度相关。在之前的工作中(Soch et al., 2020),我们提出了逆变换编码模型(ITEM),这是一种在存在逐个试验相关性的情况下从fMRI信号中进行逐个试验解码的原则方法。在这里,我们(i)进行了模拟研究,解决了它对多变量信号的性能问题,(ii)提出了基于探照灯的ITEM分析——它允许从大脑中每个体素的附近预测感兴趣的变量。我们通过确认一个先验的可信的假设,充分了解视觉系统经验验证的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信