Ilias Sarbout, Ayse Gungor, Mehdi Ounissi, Samy Zaher, Maurice Ptito, Ron Kupers, Daniel Racoceanu, Dan Milea
{"title":"Visual Prostheses in the Era of Artificial Intelligence Technology.","authors":"Ilias Sarbout, Ayse Gungor, Mehdi Ounissi, Samy Zaher, Maurice Ptito, Ron Kupers, Daniel Racoceanu, Dan Milea","doi":"10.2147/EB.S524322","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Over the past few decades, technological advancements have transformed invasive visual prostheses from theoretical concepts into real-world applications. However, functional outcomes remain limited, especially in visual acuity. This review aims to summarize current developments in retinal and cortical prostheses (RCPs) and critically assess the role of artificial intelligence (AI) in advancing these systems.</p><p><strong>Purpose: </strong>To describe current RCPs and provide a systematic review on image and signal processing algorithms designed for improved clinical outcomes.</p><p><strong>Patients and methods: </strong>We performed a systematic review of the literature related to AI subserving prosthetic vision, using mainly PubMed, but also, Elicit, a dedicated AI-based reference research assistant. A total of 455 studies were screened on PubMed, of which 23 were retained for inclusion. An additional 5 studies were identified and included through Elicit.</p><p><strong>Results: </strong>The analysis of current RCPs highlights various limitations affecting the quality of the visual flow provided by current artificial vision. Indeed, the 28 reviewed studies on AI covered two applications for RCPs including extraction of saliency in camera captured images, and consistency between electrical stimulation and perceived phosphenes. A total of 14 out of 28 studies involved the use of artificial neural networks, of which 12 included model training. Evaluation with data from a visual prosthesis was conducted in 7 studies, including 1 that was prospectively assessed with a human RCP. Validation with empirical data from human or animal data was performed in 22 out of 28 studies. Out of these, 15 were validated using simulated prosthetic vision. Finally, out of 22 studies leveraging a mathematical model for phosphenes perception, 14 used a symmetrical oversimplified modeling.</p><p><strong>Conclusion: </strong>AI algorithms show promise in optimizing prosthetic vision, particularly through enhanced image saliency extraction and stimulation strategies. However, most current studies are based on simulations. Further development and validation in real-world settings, especially through clinical testing with blind patients, are essential to assess their true effectiveness.</p>","PeriodicalId":51844,"journal":{"name":"Eye and Brain","volume":"17 ","pages":"95-113"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405713/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye and Brain","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/EB.S524322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Over the past few decades, technological advancements have transformed invasive visual prostheses from theoretical concepts into real-world applications. However, functional outcomes remain limited, especially in visual acuity. This review aims to summarize current developments in retinal and cortical prostheses (RCPs) and critically assess the role of artificial intelligence (AI) in advancing these systems.
Purpose: To describe current RCPs and provide a systematic review on image and signal processing algorithms designed for improved clinical outcomes.
Patients and methods: We performed a systematic review of the literature related to AI subserving prosthetic vision, using mainly PubMed, but also, Elicit, a dedicated AI-based reference research assistant. A total of 455 studies were screened on PubMed, of which 23 were retained for inclusion. An additional 5 studies were identified and included through Elicit.
Results: The analysis of current RCPs highlights various limitations affecting the quality of the visual flow provided by current artificial vision. Indeed, the 28 reviewed studies on AI covered two applications for RCPs including extraction of saliency in camera captured images, and consistency between electrical stimulation and perceived phosphenes. A total of 14 out of 28 studies involved the use of artificial neural networks, of which 12 included model training. Evaluation with data from a visual prosthesis was conducted in 7 studies, including 1 that was prospectively assessed with a human RCP. Validation with empirical data from human or animal data was performed in 22 out of 28 studies. Out of these, 15 were validated using simulated prosthetic vision. Finally, out of 22 studies leveraging a mathematical model for phosphenes perception, 14 used a symmetrical oversimplified modeling.
Conclusion: AI algorithms show promise in optimizing prosthetic vision, particularly through enhanced image saliency extraction and stimulation strategies. However, most current studies are based on simulations. Further development and validation in real-world settings, especially through clinical testing with blind patients, are essential to assess their true effectiveness.
期刊介绍:
Eye and Brain is an international, peer-reviewed, open access journal focusing on basic research, clinical findings, and expert reviews in the field of visual science and neuro-ophthalmology. The journal’s unique focus is the link between two well-known visual centres, the eye and the brain, with an emphasis on the importance of such connections. All aspects of clinical and especially basic research on the visual system are addressed within the journal as well as significant future directions in vision research and therapeutic measures. This unique journal focuses on neurological aspects of vision – both physiological and pathological. The scope of the journal spans from the cornea to the associational visual cortex and all the visual centers in between. Topics range from basic biological mechanisms to therapeutic treatment, from simple organisms to humans, and utilizing techniques from molecular biology to behavior. The journal especially welcomes primary research articles or review papers that make the connection between the eye and the brain. Specific areas covered in the journal include: Physiology and pathophysiology of visual centers, Eye movement disorders and strabismus, Cellular, biochemical, and molecular features of the visual system, Structural and functional organization of the eye and of the visual cortex, Metabolic demands of the visual system, Diseases and disorders with neuro-ophthalmic manifestations, Clinical and experimental neuro-ophthalmology and visual system pathologies, Epidemiological studies.