Linh H Nghiem, Jing Cao, Chrystyna D Kouros, Chul Moon
{"title":"Enhancing Empathic Accuracy: Penalized Functional Alignment Method to Correct Temporal Misalignment in Real-Time Emotional Perception.","authors":"Linh H Nghiem, Jing Cao, Chrystyna D Kouros, Chul Moon","doi":"10.1017/psy.2025.10040","DOIUrl":null,"url":null,"abstract":"<p><p>Empathic accuracy (EA) is the ability to accurately understand another person's thoughts and feelings, which is crucial for social and psychological interactions. Traditionally, EA is assessed by comparing a perceiver's moment-to-moment ratings of a target's emotional state with the target's own self-reported ratings at corresponding time points. However, misalignments between these two sequences are common due to the complexity of emotional interpretation and individual differences in behavioral responses. Conventional methods often ignore or oversimplify these misalignments, for instance by assuming a fixed time lag, which can introduce bias into EA estimates. To address this, we propose a novel alignment approach that captures a wide range of misalignment patterns. Our method leverages the square-root velocity framework to decompose emotional rating trajectories into amplitude and phase components. To ensure realistic alignment, we introduce a regularization constraint that limits temporal shifts to ranges consistent with human perceptual capabilities. This alignment is efficiently implemented using a constrained dynamic programming algorithm. We validate our method through simulations and real-world applications involving video and music datasets, demonstrating its superior performance over traditional techniques.</p>","PeriodicalId":54534,"journal":{"name":"Psychometrika","volume":" ","pages":"1-22"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychometrika","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1017/psy.2025.10040","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Empathic accuracy (EA) is the ability to accurately understand another person's thoughts and feelings, which is crucial for social and psychological interactions. Traditionally, EA is assessed by comparing a perceiver's moment-to-moment ratings of a target's emotional state with the target's own self-reported ratings at corresponding time points. However, misalignments between these two sequences are common due to the complexity of emotional interpretation and individual differences in behavioral responses. Conventional methods often ignore or oversimplify these misalignments, for instance by assuming a fixed time lag, which can introduce bias into EA estimates. To address this, we propose a novel alignment approach that captures a wide range of misalignment patterns. Our method leverages the square-root velocity framework to decompose emotional rating trajectories into amplitude and phase components. To ensure realistic alignment, we introduce a regularization constraint that limits temporal shifts to ranges consistent with human perceptual capabilities. This alignment is efficiently implemented using a constrained dynamic programming algorithm. We validate our method through simulations and real-world applications involving video and music datasets, demonstrating its superior performance over traditional techniques.
期刊介绍:
The journal Psychometrika is devoted to the advancement of theory and methodology for behavioral data in psychology, education and the social and behavioral sciences generally. Its coverage is offered in two sections: Theory and Methods (T& M), and Application Reviews and Case Studies (ARCS). T&M articles present original research and reviews on the development of quantitative models, statistical methods, and mathematical techniques for evaluating data from psychology, the social and behavioral sciences and related fields. Application Reviews can be integrative, drawing together disparate methodologies for applications, or comparative and evaluative, discussing advantages and disadvantages of one or more methodologies in applications. Case Studies highlight methodology that deepens understanding of substantive phenomena through more informative data analysis, or more elegant data description.