Kwang Gi Kim, Doojin Kim, Chang Hyun Lee, Jong Chan Yeom, Young Jae Kim, Yeon Ho Park, Jaehun Yang
{"title":"Artificial Intelligence-based Liver Volume Measurement Using Preoperative and Postoperative CT Images.","authors":"Kwang Gi Kim, Doojin Kim, Chang Hyun Lee, Jong Chan Yeom, Young Jae Kim, Yeon Ho Park, Jaehun Yang","doi":"10.2174/0115734056394257250818060804","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Accurate liver volumetry is crucial for hepatectomy. In this study, we developed and validated a deep learning system for automated liver volumetry in patients undergoing hepatectomy, both preoperatively and at 7 days and 3 months postoperatively.</p><p><strong>Methods: </strong>A 3D U-Net model was trained on CT images from three time points using a five-fold cross-validation approach. Model performance was assessed with standard metrics and comparatively evaluated across the time points.</p><p><strong>Results: </strong>The model achieved a mean Dice Similarity Coefficient (DSC) of 94.31% (preoperative: 94.91%; 7-day post-operative: 93.45%; 3-month postoperative: 94.57%) and a mean recall of 96.04%. The volumetric difference between predicted and actual volumes was 1.01 ± 0.06% preoperatively, compared to 1.04 ± 0.03% at other time points (p < 0.05).</p><p><strong>Discussion: </strong>This study demonstrates a novel capability to automatically track post-hepatectomy regeneration using AI, offering significant potential to enhance surgical planning and patient monitoring. A key limitation, however, was that the direct correlation with clinical outcomes was not assessed due to constraints of the current dataset. Therefore, future studies using larger, multi-center datasets are essential to validate the model's clinical and prognostic utility.</p><p><strong>Conclusion: </strong>The developed artificial intelligence model successfully and accurately measured liver volumes across three critical post-hepatectomy time points. These findings support the use of this automated technology as a precise and reliable tool to assist in surgical decision-making and postoperative assessment, providing a strong foundation for enhancing patient care.</p>","PeriodicalId":54215,"journal":{"name":"Current Medical Imaging Reviews","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Medical Imaging Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734056394257250818060804","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Accurate liver volumetry is crucial for hepatectomy. In this study, we developed and validated a deep learning system for automated liver volumetry in patients undergoing hepatectomy, both preoperatively and at 7 days and 3 months postoperatively.
Methods: A 3D U-Net model was trained on CT images from three time points using a five-fold cross-validation approach. Model performance was assessed with standard metrics and comparatively evaluated across the time points.
Results: The model achieved a mean Dice Similarity Coefficient (DSC) of 94.31% (preoperative: 94.91%; 7-day post-operative: 93.45%; 3-month postoperative: 94.57%) and a mean recall of 96.04%. The volumetric difference between predicted and actual volumes was 1.01 ± 0.06% preoperatively, compared to 1.04 ± 0.03% at other time points (p < 0.05).
Discussion: This study demonstrates a novel capability to automatically track post-hepatectomy regeneration using AI, offering significant potential to enhance surgical planning and patient monitoring. A key limitation, however, was that the direct correlation with clinical outcomes was not assessed due to constraints of the current dataset. Therefore, future studies using larger, multi-center datasets are essential to validate the model's clinical and prognostic utility.
Conclusion: The developed artificial intelligence model successfully and accurately measured liver volumes across three critical post-hepatectomy time points. These findings support the use of this automated technology as a precise and reliable tool to assist in surgical decision-making and postoperative assessment, providing a strong foundation for enhancing patient care.
期刊介绍:
Current Medical Imaging Reviews publishes frontier review articles, original research articles, drug clinical trial studies and guest edited thematic issues on all the latest advances on medical imaging dedicated to clinical research. All relevant areas are covered by the journal, including advances in the diagnosis, instrumentation and therapeutic applications related to all modern medical imaging techniques.
The journal is essential reading for all clinicians and researchers involved in medical imaging and diagnosis.