{"title":"Effect of host movement on the prevalence of vector-borne diseases.","authors":"Daozhou Gao, Yuan Lou","doi":"10.1007/s00285-025-02254-5","DOIUrl":null,"url":null,"abstract":"<p><p>Human movement plays a key role in spreading vector-borne diseases globally. Various spatial models of vector-borne diseases have been proposed and analyzed, mainly focusing on disease dynamics. In this paper, based on a multi-patch Ross-Macdonald model, we study the impact of host migration on the local and global host disease prevalences. Specifically, we find that the local disease prevalence of any patch is bounded by the minimum and maximum disease prevalences of all disconnected patches and establish a weak order-preserving property. For global disease prevalence, we derive its formula at both zero and infinite dispersal rates and compare them under certain conditions, and calculate the right derivative at no dispersal. In the case of two patches, we give two complete classifications of the model parameter space: one is to compare the host disease prevalences with and without host dispersal, and the other is to determine the monotonicity of host disease prevalence with respect to host dispersal rate. Numerical simulations confirm inconsistence between disease persistence and host disease prevalence, as well as between host prevalence and vector prevalence in response to host movement. In general, a more uneven distribution of hosts and vectors in a homogeneous environment leads to lower host prevalence but higher vector prevalence and stronger disease persistence.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"91 3","pages":"33"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12413432/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02254-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Human movement plays a key role in spreading vector-borne diseases globally. Various spatial models of vector-borne diseases have been proposed and analyzed, mainly focusing on disease dynamics. In this paper, based on a multi-patch Ross-Macdonald model, we study the impact of host migration on the local and global host disease prevalences. Specifically, we find that the local disease prevalence of any patch is bounded by the minimum and maximum disease prevalences of all disconnected patches and establish a weak order-preserving property. For global disease prevalence, we derive its formula at both zero and infinite dispersal rates and compare them under certain conditions, and calculate the right derivative at no dispersal. In the case of two patches, we give two complete classifications of the model parameter space: one is to compare the host disease prevalences with and without host dispersal, and the other is to determine the monotonicity of host disease prevalence with respect to host dispersal rate. Numerical simulations confirm inconsistence between disease persistence and host disease prevalence, as well as between host prevalence and vector prevalence in response to host movement. In general, a more uneven distribution of hosts and vectors in a homogeneous environment leads to lower host prevalence but higher vector prevalence and stronger disease persistence.
期刊介绍:
The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena.
Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.