{"title":"Exploring basement membrane dynamics through cross-scale imaging, manipulation, and molecular mapping","authors":"Kohei Omachi, Hironobu Fujiwara","doi":"10.1016/j.matbio.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>The basement membrane (BM), a specialized extracellular matrix (ECM), provides structural support for epithelial, endothelial, and other parenchymal cells. Once considered a static scaffold, the BM is now recognized as a dynamic and complex nanostructure composed of a diversity of molecules that actively regulate cell behavior and tissue organization. Its molecular composition, assembly, and remodeling are precisely controlled in a tissue- and stage-specific manner, contributing to the regulation of local and global mechanical properties and biochemical signaling. Understanding BM structure and function requires integrated approaches across biological scales—from nanoscale molecular interactions to tissue-level architecture. In this review, we highlight advances in three methodological areas: (1) imaging techniques that reveal BM nanostructure and dynamics, (2) manipulation strategies that uncover causal roles of BM components, and (3) omics-based approaches that map BM composition and cellular sources. Integrating these strategies enables the bridging of molecular events and organ-level functions, offering new insights into how the BM is involved in development, homeostasis, and disease progression. The aim of this review is to provide researchers with a comprehensive perspective on evolving tools for dissecting BM structure, dynamics, and function.</div></div>","PeriodicalId":49851,"journal":{"name":"Matrix Biology","volume":"141 ","pages":"Pages 67-81"},"PeriodicalIF":4.8000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matrix Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0945053X25000812","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The basement membrane (BM), a specialized extracellular matrix (ECM), provides structural support for epithelial, endothelial, and other parenchymal cells. Once considered a static scaffold, the BM is now recognized as a dynamic and complex nanostructure composed of a diversity of molecules that actively regulate cell behavior and tissue organization. Its molecular composition, assembly, and remodeling are precisely controlled in a tissue- and stage-specific manner, contributing to the regulation of local and global mechanical properties and biochemical signaling. Understanding BM structure and function requires integrated approaches across biological scales—from nanoscale molecular interactions to tissue-level architecture. In this review, we highlight advances in three methodological areas: (1) imaging techniques that reveal BM nanostructure and dynamics, (2) manipulation strategies that uncover causal roles of BM components, and (3) omics-based approaches that map BM composition and cellular sources. Integrating these strategies enables the bridging of molecular events and organ-level functions, offering new insights into how the BM is involved in development, homeostasis, and disease progression. The aim of this review is to provide researchers with a comprehensive perspective on evolving tools for dissecting BM structure, dynamics, and function.
期刊介绍:
Matrix Biology (established in 1980 as Collagen and Related Research) is a cutting-edge journal that is devoted to publishing the latest results in matrix biology research. We welcome articles that reside at the nexus of understanding the cellular and molecular pathophysiology of the extracellular matrix. Matrix Biology focusses on solving elusive questions, opening new avenues of thought and discovery, and challenging longstanding biological paradigms.