Unified Discontinuous Galerkin Analysis of a Thermo/Poro-viscoelasticity Model.

IF 3.3 2区 数学 Q1 MATHEMATICS, APPLIED
Journal of Scientific Computing Pub Date : 2025-01-01 Epub Date: 2025-09-02 DOI:10.1007/s10915-025-03016-7
Stefano Bonetti, Mattia Corti
{"title":"Unified Discontinuous Galerkin Analysis of a Thermo/Poro-viscoelasticity Model.","authors":"Stefano Bonetti, Mattia Corti","doi":"10.1007/s10915-025-03016-7","DOIUrl":null,"url":null,"abstract":"<p><p>We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for <i>proof-of-concept</i> applications in the geophysical context.</p>","PeriodicalId":50055,"journal":{"name":"Journal of Scientific Computing","volume":"105 1","pages":"11"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405049/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Scientific Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10915-025-03016-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present and analyze a discontinuous Galerkin method for the numerical modeling of a Kelvin-Voigt thermo/poro-viscoelastic problem. We present the derivation of the model and we develop a stability analysis in the continuous setting that holds both for the full inertial and quasi-static problems and that is robust with respect to most of the physical parameters of the problem. For spatial discretization, we propose an arbitrary-order weighted symmetric interior penalty scheme that supports general polytopal grids and is robust with respect to strong heterogeneities in the model coefficients. For the semi-discrete problem, we prove the extension of the stability result demonstrated in the continuous setting and we provide an a-priori error estimate. A wide set of numerical simulations is presented to assess the convergence and robustness properties of the proposed method. Moreover, we test the scheme with literature and physically sound test cases for proof-of-concept applications in the geophysical context.

Abstract Image

Abstract Image

Abstract Image

热/孔粘弹性模型的统一不连续伽辽金分析。
提出并分析了一种用于Kelvin-Voigt热/孔粘弹性问题数值模拟的不连续Galerkin方法。我们提出了模型的推导,并在连续设置下进行了稳定性分析,该分析既适用于全惯性问题,也适用于准静态问题,并且对问题的大多数物理参数都具有鲁棒性。对于空间离散化,我们提出了一种支持一般多边形网格的任意阶加权对称内惩罚方案,并且在模型系数的强异质性方面具有鲁棒性。对于半离散问题,我们证明了在连续环境下稳定性结果的推广,并给出了一个先验误差估计。通过大量的数值模拟来评估该方法的收敛性和鲁棒性。此外,我们用文献和物理上合理的测试案例来测试该方案,以便在地球物理环境中验证概念应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Scientific Computing
Journal of Scientific Computing 数学-应用数学
CiteScore
4.00
自引率
12.00%
发文量
302
审稿时长
4-8 weeks
期刊介绍: Journal of Scientific Computing is an international interdisciplinary forum for the publication of papers on state-of-the-art developments in scientific computing and its applications in science and engineering. The journal publishes high-quality, peer-reviewed original papers, review papers and short communications on scientific computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信