{"title":"Optimization of Levomilnacipran Loaded Nanostructured Lipid Carrier Using Response Surface Methodology.","authors":"Parthiban Ramalingam, Mothilal M","doi":"10.2174/0122117385396141250801060535","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The study employed Response Surface Methodology (RSM) with a Central Composite Rotatable Design (CCRD) model to optimise the formulations of Levomilnacipran nanostructured lipid carriers (LEV-NLC).</p><p><strong>Methods: </strong>This study utilised a CCRD (Central Composite Rotatable Design) with a three-factor factorial design and three levels. It examined the particle size, zeta potential, and entrapment efficiency of LEV-NLC in relation to three independent variables: the ratio of aqueous to organic phase (X1), the ratio of drug to lipid (X2), and the concentration of surfactant (X3).</p><p><strong>Results: </strong>The results demonstrated that the most favourable composition could be achieved using Response Surface Methodology (RSM). The most effective composition for LEV-NLC consisted of a 1:1 ratio of aqueous to organic phase (X1), a 1:7 ratio of drug to lipid (X2), and a surfactant concentration (X3) of 0.5%. Under the optimised conditions, the LEV-NLC formulation resulted in a particle size of 148 nm, a zeta potential of 36 mV, and an entrapment efficiency of 88%. The optimised LEV-NLC was examined using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which revealed the presence of spherical particles. The total percentage of Levomilnacipran released from the NLC was 77% at pH 7.4 and 76% at pH 6.0 over 24 hours, exhibiting a sustained release profile that could enhance the therapeutic benefits of the drug.</p><p><strong>Conclusion: </strong>This study demonstrated the effective application of RSM-CCRD for modelling LEVNLC.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385396141250801060535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
Abstract
Aim: The study employed Response Surface Methodology (RSM) with a Central Composite Rotatable Design (CCRD) model to optimise the formulations of Levomilnacipran nanostructured lipid carriers (LEV-NLC).
Methods: This study utilised a CCRD (Central Composite Rotatable Design) with a three-factor factorial design and three levels. It examined the particle size, zeta potential, and entrapment efficiency of LEV-NLC in relation to three independent variables: the ratio of aqueous to organic phase (X1), the ratio of drug to lipid (X2), and the concentration of surfactant (X3).
Results: The results demonstrated that the most favourable composition could be achieved using Response Surface Methodology (RSM). The most effective composition for LEV-NLC consisted of a 1:1 ratio of aqueous to organic phase (X1), a 1:7 ratio of drug to lipid (X2), and a surfactant concentration (X3) of 0.5%. Under the optimised conditions, the LEV-NLC formulation resulted in a particle size of 148 nm, a zeta potential of 36 mV, and an entrapment efficiency of 88%. The optimised LEV-NLC was examined using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which revealed the presence of spherical particles. The total percentage of Levomilnacipran released from the NLC was 77% at pH 7.4 and 76% at pH 6.0 over 24 hours, exhibiting a sustained release profile that could enhance the therapeutic benefits of the drug.
Conclusion: This study demonstrated the effective application of RSM-CCRD for modelling LEVNLC.
期刊介绍:
Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.