Optimization of Levomilnacipran Loaded Nanostructured Lipid Carrier Using Response Surface Methodology.

Q2 Pharmacology, Toxicology and Pharmaceutics
Parthiban Ramalingam, Mothilal M
{"title":"Optimization of Levomilnacipran Loaded Nanostructured Lipid Carrier Using Response Surface Methodology.","authors":"Parthiban Ramalingam, Mothilal M","doi":"10.2174/0122117385396141250801060535","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The study employed Response Surface Methodology (RSM) with a Central Composite Rotatable Design (CCRD) model to optimise the formulations of Levomilnacipran nanostructured lipid carriers (LEV-NLC).</p><p><strong>Methods: </strong>This study utilised a CCRD (Central Composite Rotatable Design) with a three-factor factorial design and three levels. It examined the particle size, zeta potential, and entrapment efficiency of LEV-NLC in relation to three independent variables: the ratio of aqueous to organic phase (X1), the ratio of drug to lipid (X2), and the concentration of surfactant (X3).</p><p><strong>Results: </strong>The results demonstrated that the most favourable composition could be achieved using Response Surface Methodology (RSM). The most effective composition for LEV-NLC consisted of a 1:1 ratio of aqueous to organic phase (X1), a 1:7 ratio of drug to lipid (X2), and a surfactant concentration (X3) of 0.5%. Under the optimised conditions, the LEV-NLC formulation resulted in a particle size of 148 nm, a zeta potential of 36 mV, and an entrapment efficiency of 88%. The optimised LEV-NLC was examined using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which revealed the presence of spherical particles. The total percentage of Levomilnacipran released from the NLC was 77% at pH 7.4 and 76% at pH 6.0 over 24 hours, exhibiting a sustained release profile that could enhance the therapeutic benefits of the drug.</p><p><strong>Conclusion: </strong>This study demonstrated the effective application of RSM-CCRD for modelling LEVNLC.</p>","PeriodicalId":19774,"journal":{"name":"Pharmaceutical nanotechnology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0122117385396141250801060535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The study employed Response Surface Methodology (RSM) with a Central Composite Rotatable Design (CCRD) model to optimise the formulations of Levomilnacipran nanostructured lipid carriers (LEV-NLC).

Methods: This study utilised a CCRD (Central Composite Rotatable Design) with a three-factor factorial design and three levels. It examined the particle size, zeta potential, and entrapment efficiency of LEV-NLC in relation to three independent variables: the ratio of aqueous to organic phase (X1), the ratio of drug to lipid (X2), and the concentration of surfactant (X3).

Results: The results demonstrated that the most favourable composition could be achieved using Response Surface Methodology (RSM). The most effective composition for LEV-NLC consisted of a 1:1 ratio of aqueous to organic phase (X1), a 1:7 ratio of drug to lipid (X2), and a surfactant concentration (X3) of 0.5%. Under the optimised conditions, the LEV-NLC formulation resulted in a particle size of 148 nm, a zeta potential of 36 mV, and an entrapment efficiency of 88%. The optimised LEV-NLC was examined using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which revealed the presence of spherical particles. The total percentage of Levomilnacipran released from the NLC was 77% at pH 7.4 and 76% at pH 6.0 over 24 hours, exhibiting a sustained release profile that could enhance the therapeutic benefits of the drug.

Conclusion: This study demonstrated the effective application of RSM-CCRD for modelling LEVNLC.

响应面法优化左旋美那西普兰负载纳米结构脂质载体。
目的:采用响应面法(RSM)和中心复合可旋转设计(CCRD)模型对左奥米那西普兰纳米脂质载体(LEV-NLC)的处方进行优化。方法:本研究采用CCRD(中心复合旋转设计),采用三因素析因设计和三个水平。考察了LEV-NLC的粒径、zeta电位和包封效率与三个自变量的关系:水相与有机相的比(X1)、药脂比(X2)和表面活性剂的浓度(X3)。结果:采用响应面法(RSM)可优选出最佳的复方。最有效的LEV-NLC组成为:水相与有机相比例为1:1 (X1),药物与脂质比例为1:7 (X2),表面活性剂浓度(X3)为0.5%。在优化条件下,LEV-NLC的粒径为148 nm, zeta电位为36 mV,包封效率为88%。利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对优化后的LEV-NLC进行了检测,发现存在球形颗粒。24小时内,pH值为7.4时左旋美那西普兰从NLC释放的总百分比为77%,pH值为6.0时为76%,显示出持续释放的特征,可以增强药物的治疗效果。结论:本研究证明了RSM-CCRD在LEVNLC建模中的有效应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pharmaceutical nanotechnology
Pharmaceutical nanotechnology Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.20
自引率
0.00%
发文量
46
期刊介绍: Pharmaceutical Nanotechnology publishes original manuscripts, full-length/mini reviews, thematic issues, rapid technical notes and commentaries that provide insights into the synthesis, characterisation and pharmaceutical (or diagnostic) application of materials at the nanoscale. The nanoscale is defined as a size range of below 1 µm. Scientific findings related to micro and macro systems with functionality residing within features defined at the nanoscale are also within the scope of the journal. Manuscripts detailing the synthesis, exhaustive characterisation, biological evaluation, clinical testing and/ or toxicological assessment of nanomaterials are of particular interest to the journal’s readership. Articles should be self contained, centred around a well founded hypothesis and should aim to showcase the pharmaceutical/ diagnostic implications of the nanotechnology approach. Manuscripts should aim, wherever possible, to demonstrate the in vivo impact of any nanotechnological intervention. As reducing a material to the nanoscale is capable of fundamentally altering the material’s properties, the journal’s readership is particularly interested in new characterisation techniques and the advanced properties that originate from this size reduction. Both bottom up and top down approaches to the realisation of nanomaterials lie within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信