Prenatal diagnosis of cerebellar hypoplasia in fetal ultrasound using deep learning under the constraint of the anatomical structures of the cerebellum and cistern.
{"title":"Prenatal diagnosis of cerebellar hypoplasia in fetal ultrasound using deep learning under the constraint of the anatomical structures of the cerebellum and cistern.","authors":"Xiaoxiao Wu, Fu Liu, Guoping Xu, Yiling Ma, Chen Cheng, Ruifan He, Aoxiang Yang, Jiayi Gan, Jiajun Liang, Xinglong Wu, Sheng Zhao","doi":"10.1007/s00247-025-06376-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The objective of this retrospective study is to develop and validate an artificial intelligence model constrained by the anatomical structure of the brain with the aim of improving the accuracy of prenatal diagnosis of fetal cerebellar hypoplasia using ultrasound imaging.</p><p><strong>Background: </strong>Fetal central nervous system dysplasia is one of the most prevalent congenital malformations, and cerebellar hypoplasia represents a significant manifestation of this anomaly. Accurate clinical diagnosis is of great importance for the purpose of prenatal screening of fetal health. Although ultrasound has been extensively utilized to assess fetal development, the accurate assessment of cerebellar development remains challenging due to the inherent limitations of ultrasound imaging, including low resolution, artifacts, and acoustic shadowing of the skull.</p><p><strong>Materials and methods: </strong>This retrospective study included 302 cases diagnosed with cerebellar hypoplasia and 549 normal pregnancies collected from Maternal and Child Health Hospital of Hubei Province between September 2019 and September 2023. For each case, experienced ultrasound physicians selected appropriate brain ultrasound images to delineate the boundaries of the skull, cerebellum, and cerebellomedullary cistern. These cases were divided into one training set and two test sets, based on the examination dates. This study then proposed a dual-branch deep learning classification network, anatomical structure-constrained network (ASC-Net), which took ultrasound images and anatomical structure masks as separate inputs. The performance of the ASC-Net was extensively evaluated and compared with several state-of-the-art deep learning networks. The impact of anatomical structures on the performance of ASC-Net was carefully examined.</p><p><strong>Results: </strong>ASC-Net demonstrated superior performance in the diagnosis of cerebellar hypoplasia, achieving classification accuracies of 0.9778 and 0.9222, as well as areas under the receiver operating characteristic curve of 0.9986 and 0.9265 on the two test sets. These results significantly outperformed several state-of-the-art networks on the same dataset. In comparison to other studies on cerebellar hypoplasia auxiliary diagnosis, ASC-Net also demonstrated comparable or even better performance. A subgroup analysis revealed that ASC-Net was more capable of distinguishing cerebellar hypoplasia in cases with gestational weeks greater than 30 weeks. Furthermore, when constrained by anatomical structures of both the cerebellum and cistern, ASC-Net exhibited the best performance compared to other kinds of structural constraint.</p><p><strong>Conclusions: </strong>The development and validation of ASC-Net have significantly enhanced the accuracy of prenatal diagnosis of cerebellar hypoplasia using ultrasound images. This study highlights the importance of anatomical structures of the fetal cerebellum and cistern on the performance of the diagnostic artificial intelligence model in ultrasound. This might provide new insights for clinical diagnosis of cerebellar hypoplasia, assist clinicians in providing more targeted advice and treatment during pregnancy, and contribute to improved perinatal healthcare. ASC-Net is open-sourced and publicly available in a GitHub repository at https://github.com/Wwwwww111112/ASC-Net .</p>","PeriodicalId":19755,"journal":{"name":"Pediatric Radiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pediatric Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00247-025-06376-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PEDIATRICS","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The objective of this retrospective study is to develop and validate an artificial intelligence model constrained by the anatomical structure of the brain with the aim of improving the accuracy of prenatal diagnosis of fetal cerebellar hypoplasia using ultrasound imaging.
Background: Fetal central nervous system dysplasia is one of the most prevalent congenital malformations, and cerebellar hypoplasia represents a significant manifestation of this anomaly. Accurate clinical diagnosis is of great importance for the purpose of prenatal screening of fetal health. Although ultrasound has been extensively utilized to assess fetal development, the accurate assessment of cerebellar development remains challenging due to the inherent limitations of ultrasound imaging, including low resolution, artifacts, and acoustic shadowing of the skull.
Materials and methods: This retrospective study included 302 cases diagnosed with cerebellar hypoplasia and 549 normal pregnancies collected from Maternal and Child Health Hospital of Hubei Province between September 2019 and September 2023. For each case, experienced ultrasound physicians selected appropriate brain ultrasound images to delineate the boundaries of the skull, cerebellum, and cerebellomedullary cistern. These cases were divided into one training set and two test sets, based on the examination dates. This study then proposed a dual-branch deep learning classification network, anatomical structure-constrained network (ASC-Net), which took ultrasound images and anatomical structure masks as separate inputs. The performance of the ASC-Net was extensively evaluated and compared with several state-of-the-art deep learning networks. The impact of anatomical structures on the performance of ASC-Net was carefully examined.
Results: ASC-Net demonstrated superior performance in the diagnosis of cerebellar hypoplasia, achieving classification accuracies of 0.9778 and 0.9222, as well as areas under the receiver operating characteristic curve of 0.9986 and 0.9265 on the two test sets. These results significantly outperformed several state-of-the-art networks on the same dataset. In comparison to other studies on cerebellar hypoplasia auxiliary diagnosis, ASC-Net also demonstrated comparable or even better performance. A subgroup analysis revealed that ASC-Net was more capable of distinguishing cerebellar hypoplasia in cases with gestational weeks greater than 30 weeks. Furthermore, when constrained by anatomical structures of both the cerebellum and cistern, ASC-Net exhibited the best performance compared to other kinds of structural constraint.
Conclusions: The development and validation of ASC-Net have significantly enhanced the accuracy of prenatal diagnosis of cerebellar hypoplasia using ultrasound images. This study highlights the importance of anatomical structures of the fetal cerebellum and cistern on the performance of the diagnostic artificial intelligence model in ultrasound. This might provide new insights for clinical diagnosis of cerebellar hypoplasia, assist clinicians in providing more targeted advice and treatment during pregnancy, and contribute to improved perinatal healthcare. ASC-Net is open-sourced and publicly available in a GitHub repository at https://github.com/Wwwwww111112/ASC-Net .
期刊介绍:
Official Journal of the European Society of Pediatric Radiology, the Society for Pediatric Radiology and the Asian and Oceanic Society for Pediatric Radiology
Pediatric Radiology informs its readers of new findings and progress in all areas of pediatric imaging and in related fields. This is achieved by a blend of original papers, complemented by reviews that set out the present state of knowledge in a particular area of the specialty or summarize specific topics in which discussion has led to clear conclusions. Advances in technology, methodology, apparatus and auxiliary equipment are presented, and modifications of standard techniques are described.
Manuscripts submitted for publication must contain a statement to the effect that all human studies have been reviewed by the appropriate ethics committee and have therefore been performed in accordance with the ethical standards laid down in an appropriate version of the 1964 Declaration of Helsinki. It should also be stated clearly in the text that all persons gave their informed consent prior to their inclusion in the study. Details that might disclose the identity of the subjects under study should be omitted.