Qincheng Zheng, Ke Cao, Xudong Ma, Ning Deng, Hao Chen, Yulang Cheng, Yao Lu, Huikai Xie
{"title":"SPL and THD improvement of a cantilever-diaphragm piezoelectric MEMS loudspeaker with Double-S actuators.","authors":"Qincheng Zheng, Ke Cao, Xudong Ma, Ning Deng, Hao Chen, Yulang Cheng, Yao Lu, Huikai Xie","doi":"10.1038/s41378-025-01031-0","DOIUrl":null,"url":null,"abstract":"<p><p>Piezoelectric MEMS loudspeakers based on cantilever diaphragms have demonstrated promising electroacoustic efficiency and low-frequency sound pressure level (SPL). However, their total harmonic distortion (THD) significantly increases near the first resonant frequency, and high-frequency SPL (above 10 kHz) rapidly decreases due to the resonance frequency and bandwidth limitations, severely affecting sound quality. This work presents a piezoelectric MEMS loudspeaker featuring a 2.7 µm-thick sputtered PZT film, comprising a cantilever diaphragm and four sets of Double-S actuators. The first resonance frequency of the cantilever diaphragm is 3.2 kHz, and the Double-S actuators introduce an additional resonance frequency at 21.3 kHz, addressing the issues of insufficient high-frequency SPL and poor THD performance. Testing on a 711-ear simulator reveals that, under 1-3 Vpp excitation, incorporating the Double-S actuators leads to an average SPL increase of 23 dB and an average THD reduction of 80% that remains below 0.6% across the 3.2-20 kHz range. Thus, both SPL and THD performance in the mid- to high-frequency range are improved. This work paves the way for the development of high-fidelity piezoelectric MEMS loudspeakers, offering new opportunities to improve sound quality and extend the frequency range for in-ear applications.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"167"},"PeriodicalIF":9.9000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12411614/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-01031-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric MEMS loudspeakers based on cantilever diaphragms have demonstrated promising electroacoustic efficiency and low-frequency sound pressure level (SPL). However, their total harmonic distortion (THD) significantly increases near the first resonant frequency, and high-frequency SPL (above 10 kHz) rapidly decreases due to the resonance frequency and bandwidth limitations, severely affecting sound quality. This work presents a piezoelectric MEMS loudspeaker featuring a 2.7 µm-thick sputtered PZT film, comprising a cantilever diaphragm and four sets of Double-S actuators. The first resonance frequency of the cantilever diaphragm is 3.2 kHz, and the Double-S actuators introduce an additional resonance frequency at 21.3 kHz, addressing the issues of insufficient high-frequency SPL and poor THD performance. Testing on a 711-ear simulator reveals that, under 1-3 Vpp excitation, incorporating the Double-S actuators leads to an average SPL increase of 23 dB and an average THD reduction of 80% that remains below 0.6% across the 3.2-20 kHz range. Thus, both SPL and THD performance in the mid- to high-frequency range are improved. This work paves the way for the development of high-fidelity piezoelectric MEMS loudspeakers, offering new opportunities to improve sound quality and extend the frequency range for in-ear applications.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.