Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius, Chuang-Rung Chang
{"title":"The molecular mechanisms and physiological roles of mitochondria dynamics in <i>Saccharomyces cerevisiae</i>.","authors":"Chang-Lin Chen, Wei-Ling Huang, Alexander Rapoport, Rimantas Daugelavičius, Chuang-Rung Chang","doi":"10.15698/mic2025.08.859","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast <i>Saccharomyces cerevisiae</i> has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in <i>Saccharomyces cerevisiae</i>. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.</p>","PeriodicalId":18397,"journal":{"name":"Microbial Cell","volume":"12 ","pages":"242-254"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407545/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.15698/mic2025.08.859","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria are essential organelles that form a dynamic network within cells. The fusion, fission, and transport processes among mitochondria must reach a balance, which is achieved through complex regulatory mechanisms. These dynamic processes and regulatory pathways are highly conserved across species and are coordinated to help cells respond to environmental stress. The budding yeast Saccharomyces cerevisiae has become an important model organism for studying mitochondria dynamics due to its genetic tractability and the conservation of key mitochondrial regulators. Previous research on mitochondria dynamics in yeast has provided valuable insights into the regulatory pathways in eukaryotic cells. It has helped to elucidate the mechanisms related to diseases associated with disrupted mitochondria dynamics. This review explores the molecular mechanisms underlying mitochondria dynamics and their physiological roles in Saccharomyces cerevisiae. The knowledge we learned from the primary eukaryotic yeast cell will aid us in advancing future research on the regulatory mechanisms of mitochondria in both health and disease.