Rapid free-breathing myocardial T1 mapping with free-running interleaved multi-slice acquisition and respiratory motion correction using self-navigated auto calibration.

IF 3 3区 医学 Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Hongzhang Huang, Zijian Zhou, Zhenfeng Lyu, Qinfang Miao, Genqiang Chen, Peng Hu, Haikun Qi
{"title":"Rapid free-breathing myocardial T<sub>1</sub> mapping with free-running interleaved multi-slice acquisition and respiratory motion correction using self-navigated auto calibration.","authors":"Hongzhang Huang, Zijian Zhou, Zhenfeng Lyu, Qinfang Miao, Genqiang Chen, Peng Hu, Haikun Qi","doi":"10.1002/mrm.70071","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To develop a rapid 2D free-running myocardial <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping technique that is robust to through-plane respiratory motion.</p><p><strong>Methods: </strong>A free-running golden angle radial sequence consisting of <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> encoding and self-navigated auto motion calibration (SNAC) was developed. The <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> encoding adopted inversion recovery (IR) prepared interleaved multi-slice acquisition with optimized inter-slice gap to ensure a uniform excitation of the middle slice regardless of through-plane respiratory motion. The flip angles were alternated between the odd and even IR readouts to correct flip-angle errors. SNAC was designed to calibrate the through-plane motion with the respiratory self-navigation signal extracted from the free-running sequence, and integrate the multi-slice data into a through-plane motion-corrected 2D slice for <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping reconstruction. Numerical simulations were performed to optimize the key sequence parameters, followed by phantom and in-vivo imaging to validate the accuracy and repeatability.</p><p><strong>Results: </strong>Numerical simulations yielded the dual flip angles minimizing <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> estimation errors and the adjacent slice offset achieving uniformity in the superimposed slice profile. Phantom experiments demonstrated a strong correlation between the proposed and reference method, and no dependence of the free-running <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> estimation on heart rates. Adding through-plane respiratory motion correction significantly improved the in-vivo <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping sharpness and visual quality. Validated against the conventional breath-hold mapping technique, the motion corrected free-running method achieved comparable <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping quality and repeatability.</p><p><strong>Conclusion: </strong>Respiratory motion is effectively suppressed in the proposed 2D free-running method, which achieves superior <math> <semantics> <mrow> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> mapping with acceptable repeatability in a short scan time of 46 s.</p>","PeriodicalId":18065,"journal":{"name":"Magnetic Resonance in Medicine","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic Resonance in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mrm.70071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To develop a rapid 2D free-running myocardial T 1 $$ {T}_1 $$ mapping technique that is robust to through-plane respiratory motion.

Methods: A free-running golden angle radial sequence consisting of T 1 $$ {T}_1 $$ encoding and self-navigated auto motion calibration (SNAC) was developed. The T 1 $$ {T}_1 $$ encoding adopted inversion recovery (IR) prepared interleaved multi-slice acquisition with optimized inter-slice gap to ensure a uniform excitation of the middle slice regardless of through-plane respiratory motion. The flip angles were alternated between the odd and even IR readouts to correct flip-angle errors. SNAC was designed to calibrate the through-plane motion with the respiratory self-navigation signal extracted from the free-running sequence, and integrate the multi-slice data into a through-plane motion-corrected 2D slice for T 1 $$ {T}_1 $$ mapping reconstruction. Numerical simulations were performed to optimize the key sequence parameters, followed by phantom and in-vivo imaging to validate the accuracy and repeatability.

Results: Numerical simulations yielded the dual flip angles minimizing T 1 $$ {T}_1 $$ estimation errors and the adjacent slice offset achieving uniformity in the superimposed slice profile. Phantom experiments demonstrated a strong correlation between the proposed and reference method, and no dependence of the free-running T 1 $$ {T}_1 $$ estimation on heart rates. Adding through-plane respiratory motion correction significantly improved the in-vivo T 1 $$ {T}_1 $$ mapping sharpness and visual quality. Validated against the conventional breath-hold mapping technique, the motion corrected free-running method achieved comparable T 1 $$ {T}_1 $$ mapping quality and repeatability.

Conclusion: Respiratory motion is effectively suppressed in the proposed 2D free-running method, which achieves superior T 1 $$ {T}_1 $$ mapping with acceptable repeatability in a short scan time of 46 s.

快速自由呼吸心肌T1映射与自由运行交错多层采集和呼吸运动校正使用自导航自动校准。
目的:建立一种对全平面呼吸运动具有鲁棒性的快速二维自由运行心肌t1 $$ {T}_1 $$制图技术。方法:建立由t1 $$ {T}_1 $$编码和自导航自动运动标定(SNAC)组成的自由运行黄金角径向序列。t1 $$ {T}_1 $$编码采用了反转恢复(IR)制备的交错多片采集,优化了片间间隙,保证了中间片在不受透平面呼吸运动影响下的均匀激励。翻转角度在奇数和偶数IR读数之间交替,以纠正翻转角度错误。SNAC设计用于利用自由运动序列中提取的呼吸自导航信号校准透平面运动,并将多切片数据整合成一个经过透平面运动校正的二维切片,用于t1 $$ {T}_1 $$映射重建。通过数值模拟优化了关键序列参数,然后进行了模拟和体内成像以验证其准确性和可重复性。结果:数值模拟产生了双翻转角,使t1 $$ {T}_1 $$估计误差最小化,相邻的切片偏移量在叠加的切片剖面中实现均匀性。幻影实验表明,所提出的方法与参考方法之间存在很强的相关性,并且自由运行t1 $$ {T}_1 $$估计与心率无关。通过平面呼吸运动校正显著提高了t1 $$ {T}_1 $$映射清晰度和视觉质量。与传统的屏气绘图技术相比,运动校正的自由运行方法达到了类似t1 $$ {T}_1 $$的绘图质量和可重复性。结论:所提出的二维自由运行方法有效地抑制了呼吸运动,在46 s的短扫描时间内获得了较好的t1 $$ {T}_1 $$映射和可接受的重复性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
24.20%
发文量
376
审稿时长
2-4 weeks
期刊介绍: Magnetic Resonance in Medicine (Magn Reson Med) is an international journal devoted to the publication of original investigations concerned with all aspects of the development and use of nuclear magnetic resonance and electron paramagnetic resonance techniques for medical applications. Reports of original investigations in the areas of mathematics, computing, engineering, physics, biophysics, chemistry, biochemistry, and physiology directly relevant to magnetic resonance will be accepted, as well as methodology-oriented clinical studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信