{"title":"Circadian transcriptional repressors REV-ERBα/β and E4BP4 regulate cardiac function","authors":"Yilian Wang , Pieterjan Dierickx","doi":"10.1016/j.yjmcc.2025.09.001","DOIUrl":null,"url":null,"abstract":"<div><div>Circadian rhythms are an endogenous timekeeping system with a period of approximately 24 h that regulate many aspects of body physiology to maintain organismal health. Dysregulation of circadian rhythmicity has been implicated in various human diseases such as cancer as well as metabolic and cardiovascular disorders. Intrinsic, biological oscillations are regulated by the circadian clock, a molecular transcriptional/translational feedback loop that involves activators such as BMAL1 and CLOCK, and repressors such as REV-ERBα/β and E4BP4. Recent studies have shown that REV-ERBs and E4BP4 play a key role in regulating cardiac gene expression programs and metabolism. Here, we discuss these findings and highlight the mechanisms of their role in healthy and diseased hearts. Since REV-ERBs are drug targets, they hold potential for the treatment of cardiovascular disorders that are linked to circadian dysregulation or metabolic imbalance.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"208 ","pages":"Pages 23-31"},"PeriodicalIF":4.7000,"publicationDate":"2025-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282825001610","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Circadian rhythms are an endogenous timekeeping system with a period of approximately 24 h that regulate many aspects of body physiology to maintain organismal health. Dysregulation of circadian rhythmicity has been implicated in various human diseases such as cancer as well as metabolic and cardiovascular disorders. Intrinsic, biological oscillations are regulated by the circadian clock, a molecular transcriptional/translational feedback loop that involves activators such as BMAL1 and CLOCK, and repressors such as REV-ERBα/β and E4BP4. Recent studies have shown that REV-ERBs and E4BP4 play a key role in regulating cardiac gene expression programs and metabolism. Here, we discuss these findings and highlight the mechanisms of their role in healthy and diseased hearts. Since REV-ERBs are drug targets, they hold potential for the treatment of cardiovascular disorders that are linked to circadian dysregulation or metabolic imbalance.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.