Virtual reality navigation for the early detection of Alzheimer's disease.

IF 4.5 2区 医学 Q2 GERIATRICS & GERONTOLOGY
Frontiers in Aging Neuroscience Pub Date : 2025-08-20 eCollection Date: 2025-01-01 DOI:10.3389/fnagi.2025.1571429
Sayuri Shima, Reiko Ohdake, Yasuaki Mizutani, Harutsugu Tatebe, Riki Koike, Atsushi Kasai, Epifanio Bagarinao, Kazuya Kawabata, Akihiro Ueda, Mizuki Ito, Junichi Hata, Shinsuke Ishigaki, Junichiro Yoshimoto, Hiroshi Toyama, Takahiko Tokuda, Akihiko Takashima, Hirohisa Watanabe
{"title":"Virtual reality navigation for the early detection of Alzheimer's disease.","authors":"Sayuri Shima, Reiko Ohdake, Yasuaki Mizutani, Harutsugu Tatebe, Riki Koike, Atsushi Kasai, Epifanio Bagarinao, Kazuya Kawabata, Akihiro Ueda, Mizuki Ito, Junichi Hata, Shinsuke Ishigaki, Junichiro Yoshimoto, Hiroshi Toyama, Takahiko Tokuda, Akihiko Takashima, Hirohisa Watanabe","doi":"10.3389/fnagi.2025.1571429","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.</p><p><strong>Methods: </strong>We examined 111 healthy adults for PI using a head-mounted 3D VR system, AD-related plasma biomarkers (GFAP, NfL, Aβ40, Aβ42, and p-tau181), Apolipoprotein E (ApoE) genotype, and demographic and cognitive assessments. Covariance of PI and AD biomarkers was assessed statistically, including tests for multivariate linear regression, logistic regression, and predictor importance ranking using machine learning, to identify predictive relationships for PI errors.</p><p><strong>Results: </strong>We found significant positive correlations between PI errors with age and plasma GFAP, p-tau181, and NfL levels. Multivariate analysis identified significant correlations of plasma GFAP (<i>t</i>-value = 2.16, <i>p</i> = 0.0332) and p-tau181 (<i>t</i>-value = 2.53, <i>p</i> = 0.0128) with PI errors. Predictor importance ranking using machine learning and receiver operating characteristic curves identified plasma p-tau181 as the most significant predictor of PI. ApoE genotype and plasma p-tau181 showed positive and negative PI associations (ApoE: coefficient = 0.650, <i>p</i> = 0.037; p-tau181: coefficient = -0.899, <i>p</i> = 0.041). EC thickness exhibited negative correlations with age, mean PI errors, and GFAP, NfL, and p-tau181; however, none of these associations remained significant after adjusting for age in linear regression analyses.</p><p><strong>Conclusion: </strong>These findings suggest that PI quantified by 3D VR navigation systems may be useful as a surrogate diagnostic tool for the detection of early AD pathophysiology. The hierarchical application of 3D VR PI and plasma p-tau181, in particular, may be an effective combinatorial biomarker for early AD neurodegeneration. These findings advance the application of non-invasive diagnostic tools for early testing and monitoring of AD, paving the way for timely therapeutic interventions and improved epidemiological patient outcomes.</p>","PeriodicalId":12450,"journal":{"name":"Frontiers in Aging Neuroscience","volume":"17 ","pages":"1571429"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12405256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Aging Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnagi.2025.1571429","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The development of non-invasive clinical diagnostics is paramount for the early detection of Alzheimer's disease (AD). Neurofibrillary tangles in AD originate from the entorhinal cortex, a cortical memory area that mediates navigation via path integration (PI). Here, we studied correlations between PI errors and levels of a range of AD biomarkers using a 3D virtual reality navigation system to explore PI as a non-invasive surrogate marker for early detection.

Methods: We examined 111 healthy adults for PI using a head-mounted 3D VR system, AD-related plasma biomarkers (GFAP, NfL, Aβ40, Aβ42, and p-tau181), Apolipoprotein E (ApoE) genotype, and demographic and cognitive assessments. Covariance of PI and AD biomarkers was assessed statistically, including tests for multivariate linear regression, logistic regression, and predictor importance ranking using machine learning, to identify predictive relationships for PI errors.

Results: We found significant positive correlations between PI errors with age and plasma GFAP, p-tau181, and NfL levels. Multivariate analysis identified significant correlations of plasma GFAP (t-value = 2.16, p = 0.0332) and p-tau181 (t-value = 2.53, p = 0.0128) with PI errors. Predictor importance ranking using machine learning and receiver operating characteristic curves identified plasma p-tau181 as the most significant predictor of PI. ApoE genotype and plasma p-tau181 showed positive and negative PI associations (ApoE: coefficient = 0.650, p = 0.037; p-tau181: coefficient = -0.899, p = 0.041). EC thickness exhibited negative correlations with age, mean PI errors, and GFAP, NfL, and p-tau181; however, none of these associations remained significant after adjusting for age in linear regression analyses.

Conclusion: These findings suggest that PI quantified by 3D VR navigation systems may be useful as a surrogate diagnostic tool for the detection of early AD pathophysiology. The hierarchical application of 3D VR PI and plasma p-tau181, in particular, may be an effective combinatorial biomarker for early AD neurodegeneration. These findings advance the application of non-invasive diagnostic tools for early testing and monitoring of AD, paving the way for timely therapeutic interventions and improved epidemiological patient outcomes.

虚拟现实导航用于阿尔茨海默病的早期检测。
目的:发展无创临床诊断对早期发现阿尔茨海默病(AD)至关重要。阿尔茨海默病的神经原纤维缠结起源于内嗅皮层,这是一个通过路径整合(PI)介导导航的皮质记忆区。在这里,我们使用3D虚拟现实导航系统研究PI误差与一系列AD生物标志物水平之间的相关性,以探索PI作为早期检测的非侵入性替代标志物。方法:我们使用头戴式3D VR系统检测了111名健康成人的PI, ad相关血浆生物标志物(GFAP, NfL, a β40, a β42和p-tau181),载脂蛋白E (ApoE)基因型,以及人口统计学和认知评估。统计评估PI和AD生物标志物的协方差,包括使用机器学习进行多元线性回归、逻辑回归和预测因子重要性排序的测试,以确定PI误差的预测关系。结果:我们发现PI误差与年龄、血浆GFAP、p-tau181和NfL水平呈正相关。多因素分析发现血浆GFAP (t值 = 2.16,p = 0.0332)和p-tau181 (t值 = 2.53,p = 0.0128)与PI误差显著相关。利用机器学习和受试者工作特征曲线进行预测因子重要性排序,发现血浆p-tau181是PI最重要的预测因子。ApoE基因型与血浆p-tau181呈正负相关(ApoE:系数 = 0.650,p = 0.037;p-tau181:系数 = -0.899,p = 0.041)。EC厚度与年龄、平均PI误差、GFAP、NfL和p-tau181呈负相关;然而,在线性回归分析中调整年龄后,这些关联都不显著。结论:这些研究结果表明,3D VR导航系统量化的PI可作为早期AD病理生理检测的替代诊断工具。特别是3D VR PI和血浆p-tau181的分层应用可能是早期AD神经退行性变的有效组合生物标志物。这些发现促进了非侵入性诊断工具在阿尔茨海默病早期检测和监测中的应用,为及时的治疗干预和改善流行病学患者的预后铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Aging Neuroscience
Frontiers in Aging Neuroscience GERIATRICS & GERONTOLOGY-NEUROSCIENCES
CiteScore
6.30
自引率
8.30%
发文量
1426
期刊介绍: Frontiers in Aging Neuroscience is a leading journal in its field, publishing rigorously peer-reviewed research that advances our understanding of the mechanisms of Central Nervous System aging and age-related neural diseases. Specialty Chief Editor Thomas Wisniewski at the New York University School of Medicine is supported by an outstanding Editorial Board of international researchers. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信