Regulatory Role and Biomarker Potential of Gut Microbiota Metabolites in the Progression of Metabolic dysfunction-associated steatotic liver disease (MASLD) to Hepatocellular Carcinoma (HCC).
Zongyuan Che, Wei Xue, Xuchen Zhao, Congzhong Hu, Yanzhang Tian
{"title":"Regulatory Role and Biomarker Potential of Gut Microbiota Metabolites in the Progression of Metabolic dysfunction-associated steatotic liver disease (MASLD) to Hepatocellular Carcinoma (HCC).","authors":"Zongyuan Che, Wei Xue, Xuchen Zhao, Congzhong Hu, Yanzhang Tian","doi":"10.14309/ctg.0000000000000914","DOIUrl":null,"url":null,"abstract":"<p><p>Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It is now updated as metabolic dysfunction-associated steatotic liver disease (MASLD). The progression of MASLD to hepatocellular carcinoma (HCC) involves complex mechanisms, with the gut microbiota and its metabolites playing a pivotal role in this transformation through the \"gut-liver axis.\" This review systematically summarizes the characteristics of gut microbiota dysbiosis in NAFLD patients and the regulatory mechanisms of its metabolites (e.g., short-chain fatty acids [SCFAs], secondary bile acids, trimethylamine N-oxide [TMAO], and lipopolysaccharides [LPS]) in the progression from MASLD to HCC. SCFAs exert protective effects in the early stages by enhancing the intestinal barrier and modulating immune and metabolic responses. However, metabolic disturbances, such as the \"paradoxical effect\" of butyrate and the lipogenic effect of acetate, may promote the formation of a tumor microenvironment in the later stages. Secondary bile acids (e.g., deoxycholic acid) exacerbate liver fibrosis and carcinogenesis by activating inflammatory pathways (NF-κB, MAPK), inducing oxidative stress, and inhibiting foresaid X receptor (FXR) signaling. TMAO directly drives HCC progression by activating the MAPK/NF-κB pathway, promoting epithelial-mesenchymal transition (EMT), and creating an immunosuppressive microenvironment. LPS accelerates fibrosis and metabolic reprogramming through TLR4-mediated chronic inflammation and hepatic stellate cell activation. This review highlights that the dynamic changes in gut microbiota metabolites are closely associated with MASLD -HCC progression. Specific monitoring of these metabolites may serve as potential biomarkers for early detection. Furthermore, gut-targeted therapies (e.g., fecal microbiota transplantation) have shown translational potential. Future studies are needed to further validate their clinical value and develop precise prevention and treatment strategies.</p>","PeriodicalId":10278,"journal":{"name":"Clinical and Translational Gastroenterology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical and Translational Gastroenterology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14309/ctg.0000000000000914","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It is now updated as metabolic dysfunction-associated steatotic liver disease (MASLD). The progression of MASLD to hepatocellular carcinoma (HCC) involves complex mechanisms, with the gut microbiota and its metabolites playing a pivotal role in this transformation through the "gut-liver axis." This review systematically summarizes the characteristics of gut microbiota dysbiosis in NAFLD patients and the regulatory mechanisms of its metabolites (e.g., short-chain fatty acids [SCFAs], secondary bile acids, trimethylamine N-oxide [TMAO], and lipopolysaccharides [LPS]) in the progression from MASLD to HCC. SCFAs exert protective effects in the early stages by enhancing the intestinal barrier and modulating immune and metabolic responses. However, metabolic disturbances, such as the "paradoxical effect" of butyrate and the lipogenic effect of acetate, may promote the formation of a tumor microenvironment in the later stages. Secondary bile acids (e.g., deoxycholic acid) exacerbate liver fibrosis and carcinogenesis by activating inflammatory pathways (NF-κB, MAPK), inducing oxidative stress, and inhibiting foresaid X receptor (FXR) signaling. TMAO directly drives HCC progression by activating the MAPK/NF-κB pathway, promoting epithelial-mesenchymal transition (EMT), and creating an immunosuppressive microenvironment. LPS accelerates fibrosis and metabolic reprogramming through TLR4-mediated chronic inflammation and hepatic stellate cell activation. This review highlights that the dynamic changes in gut microbiota metabolites are closely associated with MASLD -HCC progression. Specific monitoring of these metabolites may serve as potential biomarkers for early detection. Furthermore, gut-targeted therapies (e.g., fecal microbiota transplantation) have shown translational potential. Future studies are needed to further validate their clinical value and develop precise prevention and treatment strategies.
期刊介绍:
Clinical and Translational Gastroenterology (CTG), published on behalf of the American College of Gastroenterology (ACG), is a peer-reviewed open access online journal dedicated to innovative clinical work in the field of gastroenterology and hepatology. CTG hopes to fulfill an unmet need for clinicians and scientists by welcoming novel cohort studies, early-phase clinical trials, qualitative and quantitative epidemiologic research, hypothesis-generating research, studies of novel mechanisms and methodologies including public health interventions, and integration of approaches across organs and disciplines. CTG also welcomes hypothesis-generating small studies, methods papers, and translational research with clear applications to human physiology or disease.
Colon and small bowel
Endoscopy and novel diagnostics
Esophagus
Functional GI disorders
Immunology of the GI tract
Microbiology of the GI tract
Inflammatory bowel disease
Pancreas and biliary tract
Liver
Pathology
Pediatrics
Preventative medicine
Nutrition/obesity
Stomach.