{"title":"Mechanisms of Propolis Ethanol Extracts to Alleviate Sarcopenia based on Network Pharmacology and Experimental Validation.","authors":"Songhao Tian, Tao Chen, Congying Song, Hongru Guo, Conglin Jiang, Wei Feng","doi":"10.2174/0113862073397434250731053716","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Sarcopenia (Sar) is an age-related loss of muscle mass and function. Propolis, a natural product with anti-inflammatory properties, may help prevent Sar, but its active components and mechanisms remain unclear.</p><p><strong>Methods: </strong>Network pharmacology identified intersecting targets of propolis ethanol extract (PEE) and Sar. PPI and CTP networks highlighted key compounds and targets, verified by molecular docking. In vitro, apigenin (Ap), the predicted main compound, was tested on D-galactoseinduced senescent C2C12 myoblasts via cell viability and Western blotting.</p><p><strong>Results: </strong>Twelve overlapping targets were identified between PEE and Sar, with TNFα and IL6 highlighted as hub targets. Network analysis determined Ap as the main active compound. Molecular docking revealed strong binding affinities of Ap with TNFα and IL6. In vitro experiments demonstrated that Ap significantly enhanced the viability and differentiation of senescent C2C12 cells, downregulated TNFα and IL6 expression, and inhibited JAK2 and STAT3 phosphorylation, indicating suppression of the JAK-STAT signaling pathway.</p><p><strong>Discussion: </strong>The findings suggest that PEE, primarily through Ap, alleviates Sar by targeting inflammatory pathways and suppressing JAK-STAT signaling, thereby promoting muscle regeneration. The integration of network pharmacology, molecular docking, and in vitro validation provides mechanistic insights supporting the therapeutic potential of PEE in Sar. Limitations include the absence of in vivo confirmation, which warrants further animal and clinical studies to validate these effects and explore translational applications.</p><p><strong>Conclusion: </strong>This study identifies Ap as the key active compound in PEE that alleviates Sar by downregulating TNFα and IL6 and inhibiting the JAK-STAT pathway. The results provide a molecular basis for the use of propolis as a natural intervention for Sar and support its development as a functional food or therapeutic agent targeting age-related muscle degeneration.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073397434250731053716","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Sarcopenia (Sar) is an age-related loss of muscle mass and function. Propolis, a natural product with anti-inflammatory properties, may help prevent Sar, but its active components and mechanisms remain unclear.
Methods: Network pharmacology identified intersecting targets of propolis ethanol extract (PEE) and Sar. PPI and CTP networks highlighted key compounds and targets, verified by molecular docking. In vitro, apigenin (Ap), the predicted main compound, was tested on D-galactoseinduced senescent C2C12 myoblasts via cell viability and Western blotting.
Results: Twelve overlapping targets were identified between PEE and Sar, with TNFα and IL6 highlighted as hub targets. Network analysis determined Ap as the main active compound. Molecular docking revealed strong binding affinities of Ap with TNFα and IL6. In vitro experiments demonstrated that Ap significantly enhanced the viability and differentiation of senescent C2C12 cells, downregulated TNFα and IL6 expression, and inhibited JAK2 and STAT3 phosphorylation, indicating suppression of the JAK-STAT signaling pathway.
Discussion: The findings suggest that PEE, primarily through Ap, alleviates Sar by targeting inflammatory pathways and suppressing JAK-STAT signaling, thereby promoting muscle regeneration. The integration of network pharmacology, molecular docking, and in vitro validation provides mechanistic insights supporting the therapeutic potential of PEE in Sar. Limitations include the absence of in vivo confirmation, which warrants further animal and clinical studies to validate these effects and explore translational applications.
Conclusion: This study identifies Ap as the key active compound in PEE that alleviates Sar by downregulating TNFα and IL6 and inhibiting the JAK-STAT pathway. The results provide a molecular basis for the use of propolis as a natural intervention for Sar and support its development as a functional food or therapeutic agent targeting age-related muscle degeneration.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.