Sajjad Ghojavand, Giorgia Confalonieri, Stoyan P Gramatikov, Edwin B Clatworthy, Aymeric Magisson, Diógenes Honorato Piva, Francesco Dalena, Riccardo Fantini, Rossella Arletti, PetkoSt Petkov, Georgi N Vayssilov, Svetlana Mintova
{"title":"Structural Flexibility of Hydrated RHO Nanosized Zeolite Synthesized via Green Synthesis Approach at Subfreezing Conditions.","authors":"Sajjad Ghojavand, Giorgia Confalonieri, Stoyan P Gramatikov, Edwin B Clatworthy, Aymeric Magisson, Diógenes Honorato Piva, Francesco Dalena, Riccardo Fantini, Rossella Arletti, PetkoSt Petkov, Georgi N Vayssilov, Svetlana Mintova","doi":"10.1002/smtd.202501376","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the structural flexibility of zeolites under cryogenic conditions is essential for optimizing gas separation and storage performance. This study investigates nanosized RHO zeolite synthesized via green synthesis (without organic structural directing agent) upon hydration and cooling to low temperatures (<273 K) using in situ XRPD, in situ FTIR spectroscopy, and DFT simulations. Template-free synthesis is performed at low temperature (363 K), avoiding calcination or postsynthetic activation, yielding highly crystalline nanosized zeolite with minimal energy consumption and no toxic by-products. Upon hydration at 300 K, nanosized RHO zeolite adopts a two-phase expanded-contracted structure due to distinct water-cation interactions. Upon cooling to 248 K, the hydrated zeolite transitions into a single expanded phase, remaining stable after reheating to 300 K, forming a metastable state. In situ FTIR analysis indicates freezing-induced water molecule rearrangement leads to persistent hydrogen-bonding networks, preventing structural reversion. This metastable state exhibits CO<sub>2</sub> adsorption capacities comparable to conventionally activated RHO zeolite (623 K), achieved through significantly lower energy input. This performance underscores the viability of mild, green chemistry-aligned activation approaches eliminating energy-intensive high-temperature treatments. This novel approach contributes to sustainable separation processes and provides a blueprint for future innovation in porous materials guided by green chemistry principles.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01376"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the structural flexibility of zeolites under cryogenic conditions is essential for optimizing gas separation and storage performance. This study investigates nanosized RHO zeolite synthesized via green synthesis (without organic structural directing agent) upon hydration and cooling to low temperatures (<273 K) using in situ XRPD, in situ FTIR spectroscopy, and DFT simulations. Template-free synthesis is performed at low temperature (363 K), avoiding calcination or postsynthetic activation, yielding highly crystalline nanosized zeolite with minimal energy consumption and no toxic by-products. Upon hydration at 300 K, nanosized RHO zeolite adopts a two-phase expanded-contracted structure due to distinct water-cation interactions. Upon cooling to 248 K, the hydrated zeolite transitions into a single expanded phase, remaining stable after reheating to 300 K, forming a metastable state. In situ FTIR analysis indicates freezing-induced water molecule rearrangement leads to persistent hydrogen-bonding networks, preventing structural reversion. This metastable state exhibits CO2 adsorption capacities comparable to conventionally activated RHO zeolite (623 K), achieved through significantly lower energy input. This performance underscores the viability of mild, green chemistry-aligned activation approaches eliminating energy-intensive high-temperature treatments. This novel approach contributes to sustainable separation processes and provides a blueprint for future innovation in porous materials guided by green chemistry principles.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.