Structural Flexibility of Hydrated RHO Nanosized Zeolite Synthesized via Green Synthesis Approach at Subfreezing Conditions.

IF 9.1 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Sajjad Ghojavand, Giorgia Confalonieri, Stoyan P Gramatikov, Edwin B Clatworthy, Aymeric Magisson, Diógenes Honorato Piva, Francesco Dalena, Riccardo Fantini, Rossella Arletti, PetkoSt Petkov, Georgi N Vayssilov, Svetlana Mintova
{"title":"Structural Flexibility of Hydrated RHO Nanosized Zeolite Synthesized via Green Synthesis Approach at Subfreezing Conditions.","authors":"Sajjad Ghojavand, Giorgia Confalonieri, Stoyan P Gramatikov, Edwin B Clatworthy, Aymeric Magisson, Diógenes Honorato Piva, Francesco Dalena, Riccardo Fantini, Rossella Arletti, PetkoSt Petkov, Georgi N Vayssilov, Svetlana Mintova","doi":"10.1002/smtd.202501376","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the structural flexibility of zeolites under cryogenic conditions is essential for optimizing gas separation and storage performance. This study investigates nanosized RHO zeolite synthesized via green synthesis (without organic structural directing agent) upon hydration and cooling to low temperatures (<273 K) using in situ XRPD, in situ FTIR spectroscopy, and DFT simulations. Template-free synthesis is performed at low temperature (363 K), avoiding calcination or postsynthetic activation, yielding highly crystalline nanosized zeolite with minimal energy consumption and no toxic by-products. Upon hydration at 300 K, nanosized RHO zeolite adopts a two-phase expanded-contracted structure due to distinct water-cation interactions. Upon cooling to 248 K, the hydrated zeolite transitions into a single expanded phase, remaining stable after reheating to 300 K, forming a metastable state. In situ FTIR analysis indicates freezing-induced water molecule rearrangement leads to persistent hydrogen-bonding networks, preventing structural reversion. This metastable state exhibits CO<sub>2</sub> adsorption capacities comparable to conventionally activated RHO zeolite (623 K), achieved through significantly lower energy input. This performance underscores the viability of mild, green chemistry-aligned activation approaches eliminating energy-intensive high-temperature treatments. This novel approach contributes to sustainable separation processes and provides a blueprint for future innovation in porous materials guided by green chemistry principles.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e01376"},"PeriodicalIF":9.1000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202501376","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding the structural flexibility of zeolites under cryogenic conditions is essential for optimizing gas separation and storage performance. This study investigates nanosized RHO zeolite synthesized via green synthesis (without organic structural directing agent) upon hydration and cooling to low temperatures (<273 K) using in situ XRPD, in situ FTIR spectroscopy, and DFT simulations. Template-free synthesis is performed at low temperature (363 K), avoiding calcination or postsynthetic activation, yielding highly crystalline nanosized zeolite with minimal energy consumption and no toxic by-products. Upon hydration at 300 K, nanosized RHO zeolite adopts a two-phase expanded-contracted structure due to distinct water-cation interactions. Upon cooling to 248 K, the hydrated zeolite transitions into a single expanded phase, remaining stable after reheating to 300 K, forming a metastable state. In situ FTIR analysis indicates freezing-induced water molecule rearrangement leads to persistent hydrogen-bonding networks, preventing structural reversion. This metastable state exhibits CO2 adsorption capacities comparable to conventionally activated RHO zeolite (623 K), achieved through significantly lower energy input. This performance underscores the viability of mild, green chemistry-aligned activation approaches eliminating energy-intensive high-temperature treatments. This novel approach contributes to sustainable separation processes and provides a blueprint for future innovation in porous materials guided by green chemistry principles.

亚冷冻条件下绿色合成水合RHO纳米沸石的结构柔韧性。
了解沸石在低温条件下的结构灵活性对于优化气体分离和储存性能至关重要。本研究研究了通过水化和低温冷却后绿色合成(不含有机结构导向剂)合成的纳米RHO沸石(吸附能力与常规活化的RHO沸石(623 K)相当),通过显著降低能量输入来实现。这一性能强调了温和、绿色化学定向活化方法的可行性,消除了能源密集型高温处理。这种新方法有助于可持续的分离过程,并为未来在绿色化学原理指导下的多孔材料创新提供了蓝图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信