Metathesis and the building block approach to novel layered copper oxyselenides - useful tool or synthetic dead-end?

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Liam Kemp, Geoffrey Hyett
{"title":"Metathesis and the building block approach to novel layered copper oxyselenides - useful tool or synthetic dead-end?","authors":"Liam Kemp, Geoffrey Hyett","doi":"10.1039/d5mh01350j","DOIUrl":null,"url":null,"abstract":"<p><p>The use of metathesis, or ionic double displacement reactions, for the synthesis of layered copper oxyselenides is explored, and compared to the conventional solid state reaction approach across a range of temperatures. We have determined that metathesis does offer some advantages in product selectivity at low temperature but due to more complex synthetic requirements does not warrant more widespread adoption.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01350j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The use of metathesis, or ionic double displacement reactions, for the synthesis of layered copper oxyselenides is explored, and compared to the conventional solid state reaction approach across a range of temperatures. We have determined that metathesis does offer some advantages in product selectivity at low temperature but due to more complex synthetic requirements does not warrant more widespread adoption.

新型层状氧化硒化铜的复分解和构建块方法——有用的工具还是合成的死胡同?
利用复分解或离子双位移反应,探索了层状氧化硒化铜的合成,并在一定温度范围内与传统的固相反应方法进行了比较。我们已经确定,在低温下,复分解确实提供了一些产品选择性的优势,但由于更复杂的合成要求,并不保证更广泛的采用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信