Numerical and topological description of contact areas at different size scales for the contact of rough solid surfaces.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aleksandr S Aglikov, Mikhail V Zhukov, Timur A Aliev, Vladislav I Maslii, Paul V Gelfenshtein, Dmitry A Kozodaev, Daria V Andreeva, Michael Nosonovsky, Ekaterina V Skorb
{"title":"Numerical and topological description of contact areas at different size scales for the contact of rough solid surfaces.","authors":"Aleksandr S Aglikov, Mikhail V Zhukov, Timur A Aliev, Vladislav I Maslii, Paul V Gelfenshtein, Dmitry A Kozodaev, Daria V Andreeva, Michael Nosonovsky, Ekaterina V Skorb","doi":"10.1039/d5mh01327e","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel heuristic phenomenological model for analyzing the evolution of contact areas on rough surface. Contrasting with traditional methods, it employs a cut-off threshold approach to track numerical and topological metrics across different deformation stages. The model quantifies contact area distributions, nested sub-regions, and self-affine parameters, revealing universal trends across scales spanning nanometers to kilometers. Metrics for synthetically generated isotropic surfaces with Hurst exponents <i>H</i> = 2.5 and 3.5 correlate closely with those from AFM and SEM experimental datasets, respectively. In addition, the model has been tested on NASA's SRTM datasets. Cross-correlation demonstrate significant similarities in numerical and topological metrics across diverse measurement techniques, surface types, and scales, highlighting the method's robustness and calibration-free scale invariance. This approach bridges gaps in multiscale tribological analysis, offering deeper insights into frictional transitions and surface interactions. Beyond tribology and materials science, this general approach enables fundamental characterization of surface morphology as such, making it applicable to diverse fields including geomorphology, biomimetics, and nanotechnology.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01327e","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel heuristic phenomenological model for analyzing the evolution of contact areas on rough surface. Contrasting with traditional methods, it employs a cut-off threshold approach to track numerical and topological metrics across different deformation stages. The model quantifies contact area distributions, nested sub-regions, and self-affine parameters, revealing universal trends across scales spanning nanometers to kilometers. Metrics for synthetically generated isotropic surfaces with Hurst exponents H = 2.5 and 3.5 correlate closely with those from AFM and SEM experimental datasets, respectively. In addition, the model has been tested on NASA's SRTM datasets. Cross-correlation demonstrate significant similarities in numerical and topological metrics across diverse measurement techniques, surface types, and scales, highlighting the method's robustness and calibration-free scale invariance. This approach bridges gaps in multiscale tribological analysis, offering deeper insights into frictional transitions and surface interactions. Beyond tribology and materials science, this general approach enables fundamental characterization of surface morphology as such, making it applicable to diverse fields including geomorphology, biomimetics, and nanotechnology.

粗糙固体表面不同尺寸尺度接触区域的数值和拓扑描述。
本文提出了一种新的启发式现象学模型,用于分析粗糙表面接触面积的演变。与传统方法相比,该方法采用截止阈值方法跟踪不同变形阶段的数值和拓扑指标。该模型量化了接触面积分布、嵌套子区域和自仿射参数,揭示了从纳米到公里的尺度上的普遍趋势。赫斯特指数H = 2.5和3.5的合成各向同性表面的度量分别与AFM和SEM实验数据集的度量密切相关。此外,该模型已经在NASA的SRTM数据集上进行了测试。相互关联表明,在不同的测量技术、表面类型和尺度上,数值和拓扑度量具有显著的相似性,突出了该方法的鲁棒性和无需校准的尺度不变性。这种方法弥补了多尺度摩擦学分析的空白,为摩擦转变和表面相互作用提供了更深入的见解。除了摩擦学和材料科学之外,这种通用方法还可以对表面形态进行基本表征,使其适用于包括地貌学、仿生学和纳米技术在内的各种领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信