Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiaoqing Chen, Huijuan Zhao, Ruixiang Fei, Chun Huang, Jingsi Qiao, Cheng Sun, Haiming Zhu, Li Zhan, Zehua Hu, Songlin Li, Li Yang, Zemin Tang, Lianhui Wang, Yi Shi, Wei Ji, Jian-Bin Xu, Li Gao, Xuetao Gan, Xinran Wang
{"title":"Efficient energy transfer in a hybrid organic-inorganic van der Waals heterostructure","authors":"Xiaoqing Chen,&nbsp;Huijuan Zhao,&nbsp;Ruixiang Fei,&nbsp;Chun Huang,&nbsp;Jingsi Qiao,&nbsp;Cheng Sun,&nbsp;Haiming Zhu,&nbsp;Li Zhan,&nbsp;Zehua Hu,&nbsp;Songlin Li,&nbsp;Li Yang,&nbsp;Zemin Tang,&nbsp;Lianhui Wang,&nbsp;Yi Shi,&nbsp;Wei Ji,&nbsp;Jian-Bin Xu,&nbsp;Li Gao,&nbsp;Xuetao Gan,&nbsp;Xinran Wang","doi":"10.1126/sciadv.adw3969","DOIUrl":null,"url":null,"abstract":"<div >Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states. Here, we report highly efficient ET in a 2D hybrid organic-inorganic heterostructure (HOIST) of Me-PTCDI/WS<sub>2</sub>. Resonant ET is observed leading to enhanced WS<sub>2</sub> photoluminescence (PL) by 124 times. We identify Dexter exchange between the Frenkel state in donor and an excited 2<i>s</i> state in acceptor as the main ET mechanism, as supported by density functional theory calculations. We further demonstrate ET-enhanced phototransistor devices with enhanced responsivity by nearly 1000 times without sacrificing the response time. Our results expand the understanding of interlayer relaxation processes in 2D materials and open opportunities in optoelectronic devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 36","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw3969","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw3969","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Two-dimensional (2D) materials offer strong light-matter interaction and design flexibility beyond bulk semiconductors, but an intrinsic limit is the low absorption imposed by the atomic thickness. A long-sought-after goal is to achieve complementary absorption enhancement through energy transfer (ET) to break this limit. However, it is found challenging due to the competing charge transfer (CT) process and lack of resonance in exciton states. Here, we report highly efficient ET in a 2D hybrid organic-inorganic heterostructure (HOIST) of Me-PTCDI/WS2. Resonant ET is observed leading to enhanced WS2 photoluminescence (PL) by 124 times. We identify Dexter exchange between the Frenkel state in donor and an excited 2s state in acceptor as the main ET mechanism, as supported by density functional theory calculations. We further demonstrate ET-enhanced phototransistor devices with enhanced responsivity by nearly 1000 times without sacrificing the response time. Our results expand the understanding of interlayer relaxation processes in 2D materials and open opportunities in optoelectronic devices.

Abstract Image

有机-无机杂化范德华异质结构的有效能量传递
二维(2D)材料提供了比大块半导体更强的光-物质相互作用和设计灵活性,但其固有的限制是原子厚度造成的低吸收。一个长期追求的目标是通过能量转移(ET)实现互补吸收增强,以打破这一限制。然而,由于竞争电荷转移(CT)过程和激子态缺乏共振,这是具有挑战性的。在这里,我们报道了Me-PTCDI/WS2的二维杂化有机-无机异质结构(HOIST)中的高效ET。观察到共振ET导致WS2光致发光(PL)增强124倍。在密度泛函理论计算的支持下,我们确定了供体中Frenkel态和受体中激发态的Dexter交换是主要的ET机制。我们进一步展示了et增强的光电晶体管器件,在不牺牲响应时间的情况下,其响应率提高了近1000倍。我们的研究结果扩大了对二维材料层间弛豫过程的理解,并为光电器件开辟了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信