Quantum Neural Network and Gaussian Process Framework for Lithium Battery State of Health Prediction

Energy Storage Pub Date : 2025-09-05 DOI:10.1002/est2.70262
Patrick Wei Liang Lee, Kian Lun Soon, Lam Tatt Soon
{"title":"Quantum Neural Network and Gaussian Process Framework for Lithium Battery State of Health Prediction","authors":"Patrick Wei Liang Lee,&nbsp;Kian Lun Soon,&nbsp;Lam Tatt Soon","doi":"10.1002/est2.70262","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Precise forecasting of lithium-ion battery State of Health (SOH) is crucial for effective prognostics and health management (PHM) to ensure safety, reliability, and optimal performance. The existing kernel functions in Gaussian process regression (GPR) exhibit limitations in capturing complex non-linear relationships within constrained datasets, resulting in suboptimal modeling of underlying data patterns and reduced forecasting efficiency. To address this gap, an innovative quantum neural network–Gaussian process regression (QNN–GPR) framework leverages quantum feature spaces to capture high-dimensional complexities and improve prediction accuracy in a three-step manner: (i) proposing three health indicators strongly correlated with SOH to characterize battery aging, (ii) designing QNN which leverages superposition and entanglement for processing multi-parametric battery information, yielding intermediate state estimations, and (iii) utilizing GPR as the subsequent stage to refine these intermediate predictions through probabilistic enhancement. Validation on four NASA battery datasets shows the QNN–GPR model attains an average 0.98% mean absolute error (MAE), indicating its superiority over conventional GPR for battery health management.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70262","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Precise forecasting of lithium-ion battery State of Health (SOH) is crucial for effective prognostics and health management (PHM) to ensure safety, reliability, and optimal performance. The existing kernel functions in Gaussian process regression (GPR) exhibit limitations in capturing complex non-linear relationships within constrained datasets, resulting in suboptimal modeling of underlying data patterns and reduced forecasting efficiency. To address this gap, an innovative quantum neural network–Gaussian process regression (QNN–GPR) framework leverages quantum feature spaces to capture high-dimensional complexities and improve prediction accuracy in a three-step manner: (i) proposing three health indicators strongly correlated with SOH to characterize battery aging, (ii) designing QNN which leverages superposition and entanglement for processing multi-parametric battery information, yielding intermediate state estimations, and (iii) utilizing GPR as the subsequent stage to refine these intermediate predictions through probabilistic enhancement. Validation on four NASA battery datasets shows the QNN–GPR model attains an average 0.98% mean absolute error (MAE), indicating its superiority over conventional GPR for battery health management.

锂电池健康状态预测的量子神经网络和高斯过程框架
锂离子电池健康状态(SOH)的精确预测对于有效的预测和健康管理(PHM)至关重要,以确保安全性、可靠性和最佳性能。高斯过程回归(GPR)中现有的核函数在捕获约束数据集中复杂的非线性关系方面存在局限性,导致底层数据模式的次优建模和预测效率降低。为了解决这一差距,一种创新的量子神经网络-高斯过程回归(QNN-GPR)框架利用量子特征空间捕捉高维复杂性,并以三步的方式提高预测精度:(i)提出三个与SOH强相关的健康指标来表征电池老化;(ii)设计QNN,利用叠加和纠缠来处理多参数电池信息,产生中间状态估计;(iii)利用探地雷达作为后续阶段,通过概率增强来完善这些中间预测。在四个NASA电池数据集上的验证表明,QNN-GPR模型平均达到0.98%的平均绝对误差(MAE),表明其在电池健康管理方面优于传统的GPR模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信