Large-Time Existence and Decay of Entropy Solutions for Unsteady Isentropic Gas Flow in the Quasi-One-Dimensional Nozzle

IF 2.3 2区 数学 Q1 MATHEMATICS, APPLIED
Jianjun Chen, Qiquan Fang, Yun-guang Lu, Naoki Tsuge
{"title":"Large-Time Existence and Decay of Entropy Solutions for Unsteady Isentropic Gas Flow in the Quasi-One-Dimensional Nozzle","authors":"Jianjun Chen,&nbsp;Qiquan Fang,&nbsp;Yun-guang Lu,&nbsp;Naoki Tsuge","doi":"10.1111/sapm.70104","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we apply the viscosity–flux approximation method coupled with the maximum principle to obtain the a priori <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n <annotation>$L^{\\infty }$</annotation>\n </semantics></math> estimates for the viscosity approximation solutions of the unsteady isentropic gas flow in the de Laval nozzle. Then by applying the compensated compactness method, we obtain the global existence of entropy solutions. Finally, we study the large-time behavior of solutions and show the decay of the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>γ</mi>\n </msup>\n <annotation>$L^{\\gamma }$</annotation>\n </semantics></math> norm of density for any adiabatic exponent <span></span><math>\n <semantics>\n <mrow>\n <mi>γ</mi>\n <mo>&gt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\gamma &gt;1$</annotation>\n </semantics></math>.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"155 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70104","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we apply the viscosity–flux approximation method coupled with the maximum principle to obtain the a priori L $L^{\infty }$ estimates for the viscosity approximation solutions of the unsteady isentropic gas flow in the de Laval nozzle. Then by applying the compensated compactness method, we obtain the global existence of entropy solutions. Finally, we study the large-time behavior of solutions and show the decay of the L γ $L^{\gamma }$ norm of density for any adiabatic exponent γ > 1 $\gamma >1$ .

准一维喷管中非定常等熵气体流动熵解的大时间存在性和衰减性
本文应用黏度-通量近似法结合极大值原理,得到了de Laval喷嘴内非定常等熵气体流动黏度近似解的先验L∞$L^{\infty }$估计。然后应用补偿紧性方法,得到了熵解的全局存在性。最后,我们研究了解的大时间行为,并证明了任意绝热指数γ &gt; 1 $\gamma >1$的L γ $L^{\gamma }$密度范数的衰减。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信