A Novel Dual-Layer Genetic Algorithm With Parameter Interaction Framework for Battery Parameter Identification

Energy Storage Pub Date : 2025-09-06 DOI:10.1002/est2.70265
Rui Liu, Chenheng Yuan
{"title":"A Novel Dual-Layer Genetic Algorithm With Parameter Interaction Framework for Battery Parameter Identification","authors":"Rui Liu,&nbsp;Chenheng Yuan","doi":"10.1002/est2.70265","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Equivalent circuit models are widely adopted for battery modeling, yet their parameters require frequent updates due to aging-induced variations. While unit data segment (UDS)-based methods leverage operational data for parameter identification, existing approaches fail to address two critical issues: (1) the sensitivity of model accuracy to historical data utilization strategies and (2) parameter discontinuity at adjacent segment boundaries. To overcome these limitations, this study proposes a novel dual-layer genetic algorithm (GA) with a parameter interaction framework. The upper-layer GA autonomously optimizes historical data selection and initializes parameters for the first segment, while the lower-layer GA identifies parameters for subsequent segments. A boundary matrix iteration mechanism enforces parameter continuity across segments by propagating constraints iteratively. Experimental validation on Urban Dynamometer Driving Schedule (UDDS) under 25°C datasets demonstrates superior performance: Under UDDS conditions, the maximum error, mean absolute error, and RMSE are 38.6, 4.7, and 6.1 mV, respectively. These values represent improvements of 8.7%, 29.8%, and 31.4% compared to the UDS-based method; and 45.5%, 42.6%, and 45.0% compared to the Recursive Least Squares-based method. The multi-temperature validation results confirm the strong robustness of the proposed approach under disparate operating temperatures. This work advances data-driven battery modeling by resolving boundary discontinuity and reducing expert dependency in parameter identification, offering a scalable solution for cloud-based battery management systems.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Equivalent circuit models are widely adopted for battery modeling, yet their parameters require frequent updates due to aging-induced variations. While unit data segment (UDS)-based methods leverage operational data for parameter identification, existing approaches fail to address two critical issues: (1) the sensitivity of model accuracy to historical data utilization strategies and (2) parameter discontinuity at adjacent segment boundaries. To overcome these limitations, this study proposes a novel dual-layer genetic algorithm (GA) with a parameter interaction framework. The upper-layer GA autonomously optimizes historical data selection and initializes parameters for the first segment, while the lower-layer GA identifies parameters for subsequent segments. A boundary matrix iteration mechanism enforces parameter continuity across segments by propagating constraints iteratively. Experimental validation on Urban Dynamometer Driving Schedule (UDDS) under 25°C datasets demonstrates superior performance: Under UDDS conditions, the maximum error, mean absolute error, and RMSE are 38.6, 4.7, and 6.1 mV, respectively. These values represent improvements of 8.7%, 29.8%, and 31.4% compared to the UDS-based method; and 45.5%, 42.6%, and 45.0% compared to the Recursive Least Squares-based method. The multi-temperature validation results confirm the strong robustness of the proposed approach under disparate operating temperatures. This work advances data-driven battery modeling by resolving boundary discontinuity and reducing expert dependency in parameter identification, offering a scalable solution for cloud-based battery management systems.

基于参数交互框架的双层遗传算法的电池参数识别
等效电路模型被广泛用于电池建模,但由于老化引起的变化,其参数需要频繁更新。虽然基于单元数据段(UDS)的方法利用运行数据进行参数识别,但现有方法未能解决两个关键问题:(1)模型精度对历史数据利用策略的敏感性;(2)相邻段边界的参数不连续。为了克服这些局限性,本研究提出了一种具有参数交互框架的双层遗传算法。上层遗传算法自动优化历史数据选择和初始化第一个段的参数,下层遗传算法识别后续段的参数。边界矩阵迭代机制通过迭代传播约束来确保参数在各个部分之间的连续性。Urban Dynamometer Driving Schedule (UDDS)在25℃条件下的实验验证表明,UDDS条件下的最大误差为38.6 mV,平均绝对误差为4.7 mV,均方根误差为6.1 mV。与基于uds的方法相比,这些值分别提高了8.7%、29.8%和31.4%;与基于递归最小二乘法的方法相比,分别为45.5%、42.6%和45.0%。多温度验证结果证实了该方法在不同工作温度下具有较强的鲁棒性。这项工作通过解决边界不连续和减少专家对参数识别的依赖,推进了数据驱动的电池建模,为基于云的电池管理系统提供了可扩展的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信