Correlative Characterizations Reveal the Structure-Bonding-Property Relationship at a Local Scale

IF 3.6 Q1 CHEMISTRY, MULTIDISCIPLINARY
Huaide Zhang, Yiming Zhou, Chongjian Zhou, Matthias Wuttig, Yuan Yu
{"title":"Correlative Characterizations Reveal the Structure-Bonding-Property Relationship at a Local Scale","authors":"Huaide Zhang,&nbsp;Yiming Zhou,&nbsp;Chongjian Zhou,&nbsp;Matthias Wuttig,&nbsp;Yuan Yu","doi":"10.1002/cmtd.202500009","DOIUrl":null,"url":null,"abstract":"<p>Grain boundaries (GBs) play an important role in the mechanical and functional properties of polycrystalline materials. For charge carrier transport, GBs can either decrease or even increase the electrical conductivity, depending on the local atomic arrangements at the GB. Yet, uncovering the “one-to-one correlation” between structures and properties is non-trivial. This work demonstrates an advanced approach that combines multiple in-situ and ex-situ techniques to investigate the structural, chemical, and transport properties of individual GBs. Advanced characterization and processing techniques such as electron backscatter diffraction and focused ion beam allow us to site specifically “lift out” individual GBs from the polycrystalline bulk. Combined with semiconductor fabrication protocols such as electron beam lithography and deposition to prepare a measurement circuit, we can obtain the electrical properties of the microscale lamella. Moreover, the chemical composition and bonding mechanism of the same GB can be determined by atom probe tomography. An example of PbS shows that the high-angle GB strongly reduces carrier mobility due to the existence of a potential barrier and the local collapse of metavalent bonding.</p>","PeriodicalId":72562,"journal":{"name":"Chemistry methods : new approaches to solving problems in chemistry","volume":"5 9","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cmtd.202500009","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry methods : new approaches to solving problems in chemistry","FirstCategoryId":"1085","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cmtd.202500009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Grain boundaries (GBs) play an important role in the mechanical and functional properties of polycrystalline materials. For charge carrier transport, GBs can either decrease or even increase the electrical conductivity, depending on the local atomic arrangements at the GB. Yet, uncovering the “one-to-one correlation” between structures and properties is non-trivial. This work demonstrates an advanced approach that combines multiple in-situ and ex-situ techniques to investigate the structural, chemical, and transport properties of individual GBs. Advanced characterization and processing techniques such as electron backscatter diffraction and focused ion beam allow us to site specifically “lift out” individual GBs from the polycrystalline bulk. Combined with semiconductor fabrication protocols such as electron beam lithography and deposition to prepare a measurement circuit, we can obtain the electrical properties of the microscale lamella. Moreover, the chemical composition and bonding mechanism of the same GB can be determined by atom probe tomography. An example of PbS shows that the high-angle GB strongly reduces carrier mobility due to the existence of a potential barrier and the local collapse of metavalent bonding.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

相关表征揭示了局部尺度上的结构-键合-性质关系
晶界在多晶材料的力学性能和功能性能中起着重要的作用。对于载流子输运,GB可以降低甚至增加电导率,这取决于GB的局部原子排列。然而,揭示结构和属性之间的“一对一关联”并非易事。这项工作展示了一种先进的方法,该方法结合了多种原位和非原位技术来研究单个gb的结构、化学和运输性质。先进的表征和处理技术,如电子后向散射衍射和聚焦离子束,使我们能够具体地从多晶体中“提出”单个gb。结合电子束光刻和沉积等半导体制造方法制备测量电路,可以得到微尺度片层的电学特性。同时,利用原子探针层析技术可以确定同一GB的化学组成和成键机理。PbS的一个例子表明,由于存在势垒和局部元价键的崩溃,大角度GB强烈地降低了载流子迁移率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信