Quantifying Climate Change Effects of Bioenergy and BECCS: Critical Considerations and Guidance on Methodology

IF 4.1 3区 工程技术 Q1 AGRONOMY
Annette Cowie, Kati Koponen, Anthony Benoist, Göran Berndes, Miguel Brandão, Leif Gustavsson, Patrick Lamers, Eric Marland, Sebastian Rüter, Sampo Soimakallio, David Styles
{"title":"Quantifying Climate Change Effects of Bioenergy and BECCS: Critical Considerations and Guidance on Methodology","authors":"Annette Cowie,&nbsp;Kati Koponen,&nbsp;Anthony Benoist,&nbsp;Göran Berndes,&nbsp;Miguel Brandão,&nbsp;Leif Gustavsson,&nbsp;Patrick Lamers,&nbsp;Eric Marland,&nbsp;Sebastian Rüter,&nbsp;Sampo Soimakallio,&nbsp;David Styles","doi":"10.1111/gcbb.70070","DOIUrl":null,"url":null,"abstract":"<p>Bioenergy is a critical element in many national and international climate change mitigation efforts, including as a carbon dioxide removal strategy combined with the capture and durable geological storage of flue gas emissions (BECCS). However, divergent results on the effectiveness of bioenergy as a climate change mitigation measure are reported in the scientific literature. Climate impacts of bioenergy depend on case-specific factors, primarily biophysical features of the biomass production system, and the design and efficiency of conversion and capture processes. Estimates of climate impacts are also strongly affected by methodological choices and assumptions, and much of the divergence between studies derives from differences in the assumed alternate use of the land or feedstock, the alternate energy source and the system boundaries applied. We present a methodology to support robust estimates of the climate change effects of bioenergy systems, updating the standard methodology developed by the International Energy Agency's Technology Collaboration Program on Bioenergy. We provide guidance on the key choices including the reference land use and energy system that bioenergy is assumed to displace, spatial and temporal system boundaries, co-product handling, climate forcers considered, metrics applied and time horizon of impact assessment. Researchers should consider the whole bioenergy system including all life cycle stages, and choose system boundaries, reference systems and treatment of co-products that are consistent with the intended application of the results. The assessment should be normalised to a functional unit that can be compared with other systems delivering an equivalent quantity of the same function. All significant climate forcers should be included, and climate effects should be quantified using appropriate impact assessment methods that distinguish the impact of time. Consistency in methodology and interpretation will facilitate comparison between studies of different bioenergy systems.</p>","PeriodicalId":55126,"journal":{"name":"Global Change Biology Bioenergy","volume":"17 10","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcbb.70070","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology Bioenergy","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcbb.70070","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioenergy is a critical element in many national and international climate change mitigation efforts, including as a carbon dioxide removal strategy combined with the capture and durable geological storage of flue gas emissions (BECCS). However, divergent results on the effectiveness of bioenergy as a climate change mitigation measure are reported in the scientific literature. Climate impacts of bioenergy depend on case-specific factors, primarily biophysical features of the biomass production system, and the design and efficiency of conversion and capture processes. Estimates of climate impacts are also strongly affected by methodological choices and assumptions, and much of the divergence between studies derives from differences in the assumed alternate use of the land or feedstock, the alternate energy source and the system boundaries applied. We present a methodology to support robust estimates of the climate change effects of bioenergy systems, updating the standard methodology developed by the International Energy Agency's Technology Collaboration Program on Bioenergy. We provide guidance on the key choices including the reference land use and energy system that bioenergy is assumed to displace, spatial and temporal system boundaries, co-product handling, climate forcers considered, metrics applied and time horizon of impact assessment. Researchers should consider the whole bioenergy system including all life cycle stages, and choose system boundaries, reference systems and treatment of co-products that are consistent with the intended application of the results. The assessment should be normalised to a functional unit that can be compared with other systems delivering an equivalent quantity of the same function. All significant climate forcers should be included, and climate effects should be quantified using appropriate impact assessment methods that distinguish the impact of time. Consistency in methodology and interpretation will facilitate comparison between studies of different bioenergy systems.

Abstract Image

量化生物能源和BECCS对气候变化的影响:关键考虑和方法指导
生物能源是许多国家和国际减缓气候变化努力中的一个关键因素,包括作为二氧化碳清除战略与烟气排放的捕获和持久地质封存相结合。然而,关于生物能源作为减缓气候变化措施的有效性,科学文献中报告的结果存在分歧。生物能源对气候的影响取决于具体情况的因素,主要是生物质生产系统的生物物理特征,以及转换和捕获过程的设计和效率。对气候影响的估计也受到方法选择和假设的强烈影响,研究之间的许多分歧源于假定的土地或原料的替代使用、替代能源和应用的系统边界的差异。我们提出了一种方法来支持生物能源系统对气候变化影响的可靠估计,更新了国际能源署生物能源技术合作计划开发的标准方法。我们为关键选择提供了指导,包括生物能源被假设取代的参考土地利用和能源系统、空间和时间系统边界、副产品处理、考虑的气候因素、应用的指标和影响评估的时间范围。研究人员应该考虑整个生物能源系统,包括所有生命周期阶段,并选择与预期应用结果一致的系统边界、参考系统和副产物处理。评估应标准化为一个功能单元,可以与提供相同功能的同等数量的其他系统进行比较。应包括所有重要的气候因素,并应使用适当的影响评估方法对气候影响进行量化,以区分时间的影响。方法和解释的一致性将促进不同生物能源系统研究之间的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology Bioenergy
Global Change Biology Bioenergy AGRONOMY-ENERGY & FUELS
CiteScore
10.30
自引率
7.10%
发文量
96
审稿时长
1.5 months
期刊介绍: GCB Bioenergy is an international journal publishing original research papers, review articles and commentaries that promote understanding of the interface between biological and environmental sciences and the production of fuels directly from plants, algae and waste. The scope of the journal extends to areas outside of biology to policy forum, socioeconomic analyses, technoeconomic analyses and systems analysis. Papers do not need a global change component for consideration for publication, it is viewed as implicit that most bioenergy will be beneficial in avoiding at least a part of the fossil fuel energy that would otherwise be used. Key areas covered by the journal: Bioenergy feedstock and bio-oil production: energy crops and algae their management,, genomics, genetic improvements, planting, harvesting, storage, transportation, integrated logistics, production modeling, composition and its modification, pests, diseases and weeds of feedstocks. Manuscripts concerning alternative energy based on biological mimicry are also encouraged (e.g. artificial photosynthesis). Biological Residues/Co-products: from agricultural production, forestry and plantations (stover, sugar, bio-plastics, etc.), algae processing industries, and municipal sources (MSW). Bioenergy and the Environment: ecosystem services, carbon mitigation, land use change, life cycle assessment, energy and greenhouse gas balances, water use, water quality, assessment of sustainability, and biodiversity issues. Bioenergy Socioeconomics: examining the economic viability or social acceptability of crops, crops systems and their processing, including genetically modified organisms [GMOs], health impacts of bioenergy systems. Bioenergy Policy: legislative developments affecting biofuels and bioenergy. Bioenergy Systems Analysis: examining biological developments in a whole systems context.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信