Satellite-Constrained Reanalysis Reveals CO2 Versus Climate Process Compensation Across the Global Land Carbon Sink

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2025-09-04 DOI:10.1029/2025AV001689
T. Eren Bilir, A. Anthony Bloom, Alexandra G. Konings, Junjie Liu, Nicholas C. Parazoo, Gregory R. Quetin, Alexander J. Norton, Matthew A. Worden, Paul A. Levine, Shuang Ma, Renato K. Braghiere, Marcos Longo, Kevin Bowman, Sassan Saatchi, David S. Schimel, Charles E. Miller, Michael O’Sullivan, Yanghui Kang, Sudhanshu Pandey, Alex J. Patton, Yan Yang, Yanlan Liu
{"title":"Satellite-Constrained Reanalysis Reveals CO2 Versus Climate Process Compensation Across the Global Land Carbon Sink","authors":"T. Eren Bilir,&nbsp;A. Anthony Bloom,&nbsp;Alexandra G. Konings,&nbsp;Junjie Liu,&nbsp;Nicholas C. Parazoo,&nbsp;Gregory R. Quetin,&nbsp;Alexander J. Norton,&nbsp;Matthew A. Worden,&nbsp;Paul A. Levine,&nbsp;Shuang Ma,&nbsp;Renato K. Braghiere,&nbsp;Marcos Longo,&nbsp;Kevin Bowman,&nbsp;Sassan Saatchi,&nbsp;David S. Schimel,&nbsp;Charles E. Miller,&nbsp;Michael O’Sullivan,&nbsp;Yanghui Kang,&nbsp;Sudhanshu Pandey,&nbsp;Alex J. Patton,&nbsp;Yan Yang,&nbsp;Yanlan Liu","doi":"10.1029/2025AV001689","DOIUrl":null,"url":null,"abstract":"<p>Terrestrial ecosystems annually absorb <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>30</mn>\n </mrow>\n <annotation> ${\\sim} 30$</annotation>\n </semantics></math>% of anthropogenic C emissions. The degrees to which contemporary <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and climate trends drive this absorption are uncertain, as are the governing mechanisms. To reduce uncertainty, we use Bayesian model-data integration (CARbon DAta MOdel fraMework) to retrieve a terrestrial biosphere reanalysis where Earth Observations optimally inform mechanistic model processes: observations include satellite- and inventory-based constraints on distributions and change in terrestrial C (including live biomass, dead organic C, and land-atmosphere <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> exchanges) and underlying mechanisms (including photosynthesis, deforestation, water storage anomalies, and fire). We find that the impact of 2001–2021's atmospheric <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> increase on terrestrial C (+39.4 PgC) opposes and far outweighs the impact of climate trends over this period (<span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n </mrow>\n <annotation> ${-}$</annotation>\n </semantics></math>10.5 PgC). Globally, C gains are mostly attributable to live biomass growth (+31.2 PgC), while <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math>-induced dead organic C gains (+7.8 PgC) are compensated by climate-induced losses (<span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n </mrow>\n <annotation> ${-}$</annotation>\n </semantics></math>8.8 PgC). The distribution of compensating dead C changes induces an aggregate shift in dead C from high- and mid-latitudes (<span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n </mrow>\n <annotation> ${-}$</annotation>\n </semantics></math>3.5 PgC) to tropical ecosystems (+2.6 PgC). We additionally find global residence time reductions attributable to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n </mrow>\n <annotation> ${-}$</annotation>\n </semantics></math>2.6%) and climate (<span></span><math>\n <semantics>\n <mrow>\n <mo>−</mo>\n </mrow>\n <annotation> ${-}$</annotation>\n </semantics></math>1.3%) reflected across latitudes, irrespective of reservoir C changes. In aggregate, these changes reveal an acceleration and redistribution of terrestrial C stores in response to <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and climate trends, which together reflect a gradual but fundamental reorganization of the terrestrial C cycle. Tracking this reorganization—through robust and continual diagnosis of ecosystem function—is essential for accurately resolving the compensating dynamics governing the strength and resilience of the terrestrial C sink.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"6 5","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025AV001689","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025AV001689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Terrestrial ecosystems annually absorb 30 ${\sim} 30$ % of anthropogenic C emissions. The degrees to which contemporary CO 2 ${\text{CO}}_{2}$ and climate trends drive this absorption are uncertain, as are the governing mechanisms. To reduce uncertainty, we use Bayesian model-data integration (CARbon DAta MOdel fraMework) to retrieve a terrestrial biosphere reanalysis where Earth Observations optimally inform mechanistic model processes: observations include satellite- and inventory-based constraints on distributions and change in terrestrial C (including live biomass, dead organic C, and land-atmosphere CO 2 ${\text{CO}}_{2}$ exchanges) and underlying mechanisms (including photosynthesis, deforestation, water storage anomalies, and fire). We find that the impact of 2001–2021's atmospheric CO 2 ${\text{CO}}_{2}$ increase on terrestrial C (+39.4 PgC) opposes and far outweighs the impact of climate trends over this period ( ${-}$ 10.5 PgC). Globally, C gains are mostly attributable to live biomass growth (+31.2 PgC), while CO 2 ${\text{CO}}_{2}$ -induced dead organic C gains (+7.8 PgC) are compensated by climate-induced losses ( ${-}$ 8.8 PgC). The distribution of compensating dead C changes induces an aggregate shift in dead C from high- and mid-latitudes ( ${-}$ 3.5 PgC) to tropical ecosystems (+2.6 PgC). We additionally find global residence time reductions attributable to CO 2 ${\text{CO}}_{2}$ ( ${-}$ 2.6%) and climate ( ${-}$ 1.3%) reflected across latitudes, irrespective of reservoir C changes. In aggregate, these changes reveal an acceleration and redistribution of terrestrial C stores in response to CO 2 ${\text{CO}}_{2}$ and climate trends, which together reflect a gradual but fundamental reorganization of the terrestrial C cycle. Tracking this reorganization—through robust and continual diagnosis of ecosystem function—is essential for accurately resolving the compensating dynamics governing the strength and resilience of the terrestrial C sink.

Abstract Image

Abstract Image

Abstract Image

卫星约束的再分析揭示了全球陆地碳汇中二氧化碳与气候过程补偿的关系
陆地生态系统每年吸收约30%的人为碳排放。当代二氧化碳和气候趋势在多大程度上推动这种吸收尚不确定,控制机制也不确定。为了减少不确定性,我们使用贝叶斯模型-数据集成(碳数据模型框架)来检索陆地生物圈再分析,其中地球观测最适合为机制模型过程提供信息。观测包括基于卫星和库存的陆地碳分布和变化约束(包括活生物量、死有机碳和陆地-大气CO 2交换)及其潜在机制(包括光合作用、森林砍伐、水储存异常和火灾)。研究发现,2001-2021年大气co2浓度(+39.4 PgC)的增加对陆地C的影响与此期间气候趋势(- 10.5 PgC)的影响相反,且远超过其影响。在全球范围内,碳增益主要归因于活生物量增长(+31.2 PgC),而二氧化碳引起的死有机碳增益(+7.8 PgC)由气候引起的损失(- ${-}$ 8.8 PgC)补偿。补偿死碳变化的分布导致死碳从高纬度和中纬度(−${-}$ 3.5 PgC)向热带生态系统(+2.6 PgC)转移。我们还发现全球停留时间减少可归因于co2 ${\text{CO}}_{2}$(- ${-}$ 2.6%)和气候(- ${-}$)1.3%)跨纬度反映,与储层C变化无关。总的来说,这些变化揭示了陆地碳储量的加速和重新分配是对二氧化碳和气候趋势的响应,它们共同反映了陆地碳循环的渐进但基本的重组。通过对生态系统功能的稳健和持续的诊断来跟踪这种重组,对于准确地解决控制陆地碳汇强度和恢复力的补偿动力学至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信