Subcritical regimes in Poisson Boolean percolation on Ahlfors regular spaces

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Yutaka Takeuchi
{"title":"Subcritical regimes in Poisson Boolean percolation on Ahlfors regular spaces","authors":"Yutaka Takeuchi","doi":"10.1007/s10955-025-03504-y","DOIUrl":null,"url":null,"abstract":"<div><p>We study the Poisson Boolean percolation model on Ahlfors regular metric measure spaces, extending fundamental results from the Euclidean spaces to more general geometric settings. Ahlfors regular space is a metric measure space that has a polynomial growth rate of metric balls. Our main result establishes that for s-Ahlfors regular spaces, the model exhibits a subcritical regime (no infinite clusters for small intensities) if and only if the radius distribution has a finite s-th moment, generalizing Gouéré’s result for the Euclidean spaces. We prove both directions: when an s-th moment is finite, we show that subcritical behavior exists using geometric properties of Ahlfors regular spaces, particularly the doubling property and the uniform perfectness. Conversely, when an s-th moment diverges, we demonstrate that infinite clusters occur almost surely for any positive intensity. The key technical innovation lies in handling the geometric challenges absent in Euclidean spaces, such as potentially empty annuli between concentric balls. We overcome this using uniform perfectness, which guarantees nonempty annuli under sufficient expansion, combined with doubling properties to control covering numbers. Our results apply broadly to Riemannian manifolds with nonnegative Ricci curvature, ultrametric spaces, unbounded Sierpinski gaskets, and snowflake constructions of Ahlfors regular spaces.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"192 9","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-025-03504-y","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We study the Poisson Boolean percolation model on Ahlfors regular metric measure spaces, extending fundamental results from the Euclidean spaces to more general geometric settings. Ahlfors regular space is a metric measure space that has a polynomial growth rate of metric balls. Our main result establishes that for s-Ahlfors regular spaces, the model exhibits a subcritical regime (no infinite clusters for small intensities) if and only if the radius distribution has a finite s-th moment, generalizing Gouéré’s result for the Euclidean spaces. We prove both directions: when an s-th moment is finite, we show that subcritical behavior exists using geometric properties of Ahlfors regular spaces, particularly the doubling property and the uniform perfectness. Conversely, when an s-th moment diverges, we demonstrate that infinite clusters occur almost surely for any positive intensity. The key technical innovation lies in handling the geometric challenges absent in Euclidean spaces, such as potentially empty annuli between concentric balls. We overcome this using uniform perfectness, which guarantees nonempty annuli under sufficient expansion, combined with doubling properties to control covering numbers. Our results apply broadly to Riemannian manifolds with nonnegative Ricci curvature, ultrametric spaces, unbounded Sierpinski gaskets, and snowflake constructions of Ahlfors regular spaces.

Ahlfors正则空间上泊松布尔渗透的次临界状态
我们研究了Ahlfors正则度量空间上的泊松布尔渗透模型,将欧几里德空间的基本结果推广到更一般的几何环境。Ahlfors正则空间是具有多项式增长速率的度量球的度量空间。我们的主要结果表明,对于s- ahlfors正则空间,当且仅当半径分布具有有限的s矩时,模型表现出一个次临界状态(小强度下没有无限簇),推广了gou r在欧几里得空间中的结果。我们证明了两个方向:当一个s阶矩是有限时,我们利用Ahlfors正则空间的几何性质,特别是倍增性和一致完备性,证明了次临界行为的存在。相反,当第s阶矩发散时,我们证明对于任何正强度,几乎肯定会出现无限簇。关键的技术创新在于处理欧几里得空间中不存在的几何挑战,例如同心球之间可能存在的空环。我们利用均匀完美性克服了这一问题,它保证了环空在充分展开下的非空性,并结合倍增性来控制覆盖数。我们的结果广泛应用于非负Ricci曲率的黎曼流形、超度量空间、无界Sierpinski垫片和Ahlfors正则空间的雪花构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Statistical Physics
Journal of Statistical Physics 物理-物理:数学物理
CiteScore
3.10
自引率
12.50%
发文量
152
审稿时长
3-6 weeks
期刊介绍: The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信