An Ultra-Sensitive Electrochemical Sensing Platform Based on a Novel Ternary Heterostructured Ag-TiO2@Zr-TCBPE Nanocomposite for Ciprofloxacin Detection in Food

IF 3 3区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Congwei Li, Beibei Wang, Kai Kang, Lanyue Wang, Zhenzhen Zhao, Yuping Wang, Xueping Ji
{"title":"An Ultra-Sensitive Electrochemical Sensing Platform Based on a Novel Ternary Heterostructured Ag-TiO2@Zr-TCBPE Nanocomposite for Ciprofloxacin Detection in Food","authors":"Congwei Li,&nbsp;Beibei Wang,&nbsp;Kai Kang,&nbsp;Lanyue Wang,&nbsp;Zhenzhen Zhao,&nbsp;Yuping Wang,&nbsp;Xueping Ji","doi":"10.1007/s12161-025-02829-4","DOIUrl":null,"url":null,"abstract":"<div><p>To address ciprofloxacin (CIP) contamination in animal-derived foods, an ultrasensitive electrochemical sensing platform based on a novel ternary heterostructure (Ag-TiO<sub>2</sub>@Zr-TCBPE) was developed through interfacial engineering. The heterointerface was constructed by anchoring a metal–metal oxide electrocatalyst (Ag-TiO<sub>2</sub>) onto a conductive metal–organic framework (Zr-TCBPE) with a 3D porous hexagonal prismatic structure and high conductivity. This work demonstrates for the first time that the large-scale conjugated architecture of Zr-TCBPE nanotubes enhances CIP enrichment, while the Ag-TiO<sub>2</sub>/Zr-TCBPE heterointerface optimizes electron transport pathways and synergistically promotes CIP oxidation via interfacial electric field-driven effects. Under acidic conditions (pH 5.0), the Ag-TiO<sub>2</sub>@Zr-TCBPE/GCE sensor exhibited optimal performance: a linear range spanning five orders of magnitude (2.5 nmol·L<sup>−1</sup> to 150 μmol·L<sup>−1</sup>), a limit of detection (LOD) of 1.6 nmol·L<sup>−1</sup>, surpassing most reported CIP sensors. The sensor also showed high anti-interference capability (97.1–107% signal retention), long-term stability (&gt; 96.4% signal retention after 15 days), and satisfactory recovery rates (91.6–103%) in complex matrices (milk, eggs, and river water). This study provides fundamental insights into TCBPE-MOF heterointerface engineering and establishes a robust analytical platform for detecting trace antimicrobials in food and environmental samples.</p></div>","PeriodicalId":561,"journal":{"name":"Food Analytical Methods","volume":"18 10","pages":"2175 - 2189"},"PeriodicalIF":3.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Analytical Methods","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1007/s12161-025-02829-4","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

To address ciprofloxacin (CIP) contamination in animal-derived foods, an ultrasensitive electrochemical sensing platform based on a novel ternary heterostructure (Ag-TiO2@Zr-TCBPE) was developed through interfacial engineering. The heterointerface was constructed by anchoring a metal–metal oxide electrocatalyst (Ag-TiO2) onto a conductive metal–organic framework (Zr-TCBPE) with a 3D porous hexagonal prismatic structure and high conductivity. This work demonstrates for the first time that the large-scale conjugated architecture of Zr-TCBPE nanotubes enhances CIP enrichment, while the Ag-TiO2/Zr-TCBPE heterointerface optimizes electron transport pathways and synergistically promotes CIP oxidation via interfacial electric field-driven effects. Under acidic conditions (pH 5.0), the Ag-TiO2@Zr-TCBPE/GCE sensor exhibited optimal performance: a linear range spanning five orders of magnitude (2.5 nmol·L−1 to 150 μmol·L−1), a limit of detection (LOD) of 1.6 nmol·L−1, surpassing most reported CIP sensors. The sensor also showed high anti-interference capability (97.1–107% signal retention), long-term stability (> 96.4% signal retention after 15 days), and satisfactory recovery rates (91.6–103%) in complex matrices (milk, eggs, and river water). This study provides fundamental insights into TCBPE-MOF heterointerface engineering and establishes a robust analytical platform for detecting trace antimicrobials in food and environmental samples.

基于新型三元异质结构Ag-TiO2@Zr-TCBPE纳米复合材料的食品中环丙沙星超灵敏电化学检测平台
为解决动物性食品中环丙沙星(CIP)污染问题,通过界面工程技术,建立了基于新型三元异质结构(Ag-TiO2@Zr-TCBPE)的超灵敏电化学传感平台。该异质界面是通过将金属-金属氧化物电催化剂(Ag-TiO2)锚定在具有三维多孔六方棱柱结构和高导电性的导电金属-有机骨架(Zr-TCBPE)上构建的。这项工作首次证明了Zr-TCBPE纳米管的大规模共轭结构增强了CIP的富集,而Ag-TiO2/Zr-TCBPE异质界面优化了电子传递途径,并通过界面电场驱动效应协同促进了CIP的氧化。在酸性条件下(pH 5.0), Ag-TiO2@Zr-TCBPE/GCE传感器表现出最佳性能:线性范围为5个数量级(2.5 nmol·L−1至150 μmol·L−1),检出限(LOD)为1.6 nmol·L−1,超过了大多数报道的CIP传感器。该传感器还具有较高的抗干扰能力(97.1-107%的信号保留率),长期稳定性(15天后的信号保留率>; 96.4%),在复杂基质(牛奶、鸡蛋和河水)中的回收率(91.6-103%)令人满意。该研究为TCBPE-MOF异质界面工程提供了基础见解,并为食品和环境样品中微量抗菌剂的检测建立了强大的分析平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Food Analytical Methods
Food Analytical Methods 农林科学-食品科技
CiteScore
6.00
自引率
3.40%
发文量
244
审稿时长
3.1 months
期刊介绍: Food Analytical Methods publishes original articles, review articles, and notes on novel and/or state-of-the-art analytical methods or issues to be solved, as well as significant improvements or interesting applications to existing methods. These include analytical technology and methodology for food microbial contaminants, food chemistry and toxicology, food quality, food authenticity and food traceability. The journal covers fundamental and specific aspects of the development, optimization, and practical implementation in routine laboratories, and validation of food analytical methods for the monitoring of food safety and quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信