{"title":"Fire Vigilance Pocket: An Intelligent APP for Real-Time Fire Hazard Quantification","authors":"Zilong Wang, Tianhang Zhang, Xinyan Huang","doi":"10.1007/s10694-025-01738-6","DOIUrl":null,"url":null,"abstract":"<div><p>Real-time fire hazard estimation is an essential step for smart firefighting practice. This paper introduces the Fire Vigilance Pocket Edition application (FV Pocket), which is designed to enable automatic fire identification and quantification using computer vision and deep learning techniques, for real-time fire surveillance. The application comprises four main functions, namely, fire detection, fire segmentation, fire measurement, and fire calorimetry. Fire detection is performed by YOLOv5, which localizes the fire source in the image and marks the location of the flame area. Subsequently, the detected fire area is input into the Swin-Unet model to separate the flame and background, enabling the real-time display of the fire area. Additionally, image-based fire measurement techniques are used to determine the flame height and the flame area according to the estimated reference scales, which also facilitates the rescaling of raw images. Finally, the rescaled images are fed into a pre-trained fire calorimetry model to identify the heat release rate of the fire. The models used in FV Pocket, their design, and main features are discussed, and the application is demonstrated using real fire events under various scenarios. The potential uses and limitations of FV Pocket are also addressed in this work.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"61 5","pages":"3461 - 3480"},"PeriodicalIF":2.4000,"publicationDate":"2025-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-025-01738-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-025-01738-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Real-time fire hazard estimation is an essential step for smart firefighting practice. This paper introduces the Fire Vigilance Pocket Edition application (FV Pocket), which is designed to enable automatic fire identification and quantification using computer vision and deep learning techniques, for real-time fire surveillance. The application comprises four main functions, namely, fire detection, fire segmentation, fire measurement, and fire calorimetry. Fire detection is performed by YOLOv5, which localizes the fire source in the image and marks the location of the flame area. Subsequently, the detected fire area is input into the Swin-Unet model to separate the flame and background, enabling the real-time display of the fire area. Additionally, image-based fire measurement techniques are used to determine the flame height and the flame area according to the estimated reference scales, which also facilitates the rescaling of raw images. Finally, the rescaled images are fed into a pre-trained fire calorimetry model to identify the heat release rate of the fire. The models used in FV Pocket, their design, and main features are discussed, and the application is demonstrated using real fire events under various scenarios. The potential uses and limitations of FV Pocket are also addressed in this work.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.